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Abstract 

The contribution of genetic variation to risk for late-onset Alzheimer’s disease is well-accepted; 

however, the roles of specific mutations within established risk genes are not clear. 

Comprehensive datasets with informative in vivo and postmortem biomarkers now offer the 

opportunity to understand when, where, and how mutations within these genes individually exert 

their effects on the brain. Moreover, it is known that many of these genes interact at the pathway 

level, and therefore genetic effects should also be considered in context using gene-gene 

interaction approaches. I hypothesized that common functional variants modifying established 

Alzheimer’s risk pathways would demonstrate a) independent effects and b) synergistic effects 

on human brain structure and other Alzheimer’s biomarkers. First, the Apolipoprotein E (APOE) 

gene ε4 allele was found to be associated with white matter integrity in an age-dependent 

manner. Second, mutations within the sortilin-like receptor (SORL1) gene were associated with 

differences in white matter integrity, SORL1 gene mRNA expression, and amyloid 
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neuropathology that suggested an early genetic risk mechanism beginning as early as childhood. 

Third, a translocator protein (TSPO) gene variant known to alter TSPO binding characteristics 

was found to have no direct effects on inflammatory and cerebrovascular brain changes in over 2 

300 elderly subjects. Finally, based on evidence from recent human stem cell experiments, RNA 

sequencing was used to identify a novel interaction of gene variants across the SORL1 gene with 

the brain derived neurotrophic factor (BDNF) Val66Met polymorphism regulating isoform-

specific SORL1 expression related to amyloid pathology and brain structural alterations. 

Altogether, these experiments demonstrate that some genetic modifiers of AD risk pathways are 

linked either directly via biochemical function or indirectly via the convergence of pathways they 

influence. These studies have begun to parse the immense heterogeneity of the Alzheimer’s 

disease diagnosis as well as uncover distinct genetically-defined molecular subtypes of at-risk 

individuals who should be targeted in future therapeutic trials. Novel interventions designed to 

engage specific neural circuits or molecular pathways would be of most benefit to the molecular 

subtypes in which they are most greatly altered. 
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Chapter 1  

1 Literature Review 

1.1 Alzheimer’s Disease 

1.1.1 Discovery and Early History 

The neuropsychiatric term “Alzheimer’s disease” (AD) has only existed since the early 20
th

 

century, however, the medicophilisophical concept of dementia – essentially a general loss of 

capacity to act or reason responsibly – has existed since ancient times. Perhaps the first 

description of dementia came from Pharaonic Egypt, around 900 BC, where the Maxims of Ptah 

Hoty described senility as a second childhood (Roman, 2002): 

My sovereign master, old age is here. Senility has descended on me… my spirit is 

forgetful and I can no longer remember yesterday 

Up until the late 19
th
 century, dementia was accepted as merely an exaggeration of the aging 

process (hence “senile dementia”), with known clinical presentation of progressive memory loss, 

changes in mood, and impairments in speech and executive function. This understanding was 

mostly fueled by macroscopic investigations of the postmortem brain, showing diffuse signs of 

deterioration in texture and size similarly in dementia and old age.  

In 1893, a Czech neurologist and psychiatrist named Arnold Pick (known for identifying Pick’s 

disease, now known as frontotemporal dementia (FTD) (Kertesz & Munoz, 1998; Pick, 1906)) 

recognized that focal atrophic brain changes may lead to specific cognitive disturbances 

observed in senile dementia. At the same time, Paul Blocq and Georges Marinesco described 

‘amas ronds’ (round heaps) in the cortex of an elderly epileptic patient that stained more strongly 

than the surrounding neutropil (Blocq & Marinesco, 1892). Only a few years later, Emil Redlich 

first observed sclerotic plaques in a case of senile dementia (Redlich, 1898), assuming them to be 

proliferated glial cells. In 1910, Oskar Fisher identified the plaques as deposits of indeterminate 

nature. As such, before the publication of now-famous research by its namesake, neither the 

clinical presentation nor plaque neuropathology of what we now call AD were unknown.  
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What is regarded as the unearthing of the neuropathological characteristics of AD as we know it 

today began as the description of  “a peculiar severe disease process of the cerebral cortex” by 

the German psychiatrist and neuroanatomist Alois Alzheimer (Hippius & Neundörfer, 2003). 

Alzheimer, a colleague of Emil Kraepelin (who coined the term “dementia praecox” to describe 

what is now known as schizophrenia) had witnessed the symptomatological progression of 

patient Auguste Deter after she was admitted to hospital for untreatable paranoia. Her condition 

quickly worsened to include sleep disturbances, memory loss, progressive confusion, and 

ultimately her death five years later in April, 1906. Alzheimer’s examination of her brain at 

autopsy found the senile plaques (“miliary bodies”) and neurofibrillary tangles (NFT) (“dense 

bundles of fibrils”) that today constitute the neuropathological signature of AD (Alzheimer, 

Stelzmann, Schnitzlein, & Murtagh, 1995; Schachter & Davis, 2000). While the plaques had 

been observed years earlier (Redlich, 1898), Alzheimer was the first to identify neurofibrillary 

tangles using silver staining. It was Emil Kraepelin who named the illness “Alzheimer’s disease” 

when he included it in the 8
th
 edition of his textbook Psychiatrie in 1910 (Hippius & Neundörfer, 

2003); it has been suggested that Kraepelin coined the term mainly to attract attention and 

prestige to his Munich laboratory (in competition with Arnold Pick and Oskar Fisher in Prague) 

(Beach, 1987) and that Alzheimer never intended to identify a homogeneous disease process but 

rather to contribute to the basic understanding of neurobiology (Berrios, 1990; Maurer, Volk, & 

Gerbaldo, 1997). 

It wasn’t until the late 1960s that clinical neuropathologists showed the plaque and tangle 

pathology characteristic of AD was found often in old age (in subjects both with (Tomlinson, 

Blessed, & Roth, 1970) and without (Tomlinson, Blessed, & Roth, 1968) dementia) and likely 

the most common cause of dementia in elderly (Roth, Tomlinson, & Blessed, 1966). In 1976, 

Robert Katzman published a noteworthy editorial highlighting the insidious nature of AD 

pathology and the fact that despite its lack of acknowledgement as a cause of death in society, it 

likely ranked among the most prevalent (Katzman, 1976). He accurately predicted that AD 

would present a major socioeconomic burden as the population ages. Public recognition of the 

threat of AD progressed over the next several decades, which saw the establishment of the 

National Institutes on Aging (NIA, Oct 7, 1974), the emergence of international criteria and 

standardized pathologic procedures for AD diagnosis (Mirra et al., 1991; Moms et al., 1989), and 

ultimately the solidification of the neuropathological identity of AD.  
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While today AD is an accepted diagnostic term, the development of its nomenclature has partly 

evolved from a convolution of nosological and pathophysiological concepts, as well as unique 

political circumstances surrounding its discovery at the turn of the 20
th
 century. As a result of 

technological advances in the modern scientific era, much work has been done to disentangle and 

properly define the characteristic pathologies and symptoms that are encompassed under the term 

AD. As such, a sort of renaissance is under way, whereby AD is understood to be a spectrum of 

disease rather than a single process (McKhann et al., 2011). A perspective rooted in the history 

of the disease may help shed some light on the immense heterogeneity of the modern AD 

diagnosis and provides century-old impetus for much of the work presented in this thesis. 

 

1.1.2 Diagnosis 

In 2010 and 2011, the International Working Group (IWG) (Dubois et al., 2010) and National 

Institutes of Health-Alzheimer’s Association (NIH-AA) working group (McKhann et al., 2011) 

met to re-evaluate and update earlier AD diagnostic criteria (McKhann et al., 1984) based on the 

rapidly-evolving research landscape. Both groups recognized the value of objective biomarkers 

(fluid and imaging) in reaching diagnosis (in fact, the IWG guidelines require biomarker 

abnormalities for diagnosis); interestingly, the NIH-AA guidelines permit a diagnosis of possible 

AD in the absence of core AD cognitive symptoms (“possible AD with evidence of the AD 

pathophysiological process”). Most recently, in 2013, the Diagnostic and Statistical Manual, 

Fifth Edition (DSM-5) (American Psychiatric Association, 2013), the authoritative psychiatric 

classification and diagnostic tool, was published. In the DSM-5, dementia was reclassified to 

major and minor neurocognitive impairment; to meet criteria for major cognitive impairment the 

individual must show core cognitive deficits that significantly impair functional independence in 

everyday activities, whereas the minor type refers to situations where changes in cognition have 

not yet impacted everyday function. Despite this new proposed nomenclature, the term 

“dementia” remains prevalent in the literature and will be used throughout this thesis.  

Currently, the diagnostic process for AD in living humans is somewhat complex and involves 

both objective and subjective assessments of an individual’s daily functioning and cognitive 

performance over time. From McKhann et al., 2011, a clinical diagnoses of AD must be made on 

a background diagnosis of dementia, which requires that an individual 1) be experiencing 
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cognitive or behavioural symptoms that interfere with daily functioning, 2) have demonstrated a 

decline in performance or functioning from a previous state, and 3) show symptoms that are not 

explained by delirium or a major psychiatric disorder. Further, there are specific requirements for 

which cognitive domains must be impaired to warrant a diagnosis of dementia; learning, 

reasoning, visuospatial abilities, language, and personality, behavior or comportment. In cases 

where the individual’s ability to function is not significantly impaired (by the judgement of an 

experienced clinician, the patient, and a knowledgeable informant), a diagnosis of mild cognitive 

impairment (MCI) may be more appropriate. Following the diagnosis of dementia comes the 

ascertainment of its likely source; the DSM-5 lists 13 potential underlying causes for major 

neurocognitive disorder including AD, Lewy body disease, HIV infection, traumatic brain injury, 

substance use, Huntington’s disease, and “unspecified” (American Psychiatric Association, 

2013).  

Clinical AD may be diagnosed as A) probable, B) possible, or C) probable or possible AD with 

evidence of the AD pathophysiological process (McKhann et al., 2011). Only A and B are 

intended for use in clinical settings, whereas C is intended for research purposes. In the case of 

A) probable AD, the subject meets criteria for dementia as well as 1) shows insidious onset 

(months to years, rather than hours to days), 2) has a clear history of worsening cognition, and 3) 

has a prominent amnestic presentation or most prominent cognitive deficits in language, 

visuospatial presentation, or executive dysfunction. AD diagnosis is excluded if there is evidence 

of cerebrovascular disease or other dementias/aphasias. If the subject possesses genetic 

mutations known to cause early-onset Alzheimer’s disease (APP, PSEN1, or PSEN2), or a well-

documented history of cognitive decline, then the diagnosis can be upgraded to probable AD 

with “increased level of certainty”. A diagnosis of possible AD can be made in the event that a 

subject displays the core cognitive deficits found in AD, but has an atypical course (e.g. sudden 

onset) or etiologically mixed presentation (e.g. concomitant cerebrovascular disease or features 

of other dementias). Finally, A definite diagnosis of AD can only be made upon postmortem 

evaluation of brain tissue; biopsy or autopsy must yield histopathologic evidence of amyloid 

plaque and neurofibrillary tangle pathology (McKhann et al., 1984). Currently, the definitive 

criteria for postmortem neuropathological assessment of AD are those according to the NIA-AA, 

published in 2012 (Montine et al., 2012) 



www.manaraa.com

5 

 

Given the insidious and gradual onset of AD symptoms, the recognition and definition of the 

intermediate stage between healthy aging and dementia has been of great interest. The term 

“mild cognitive impairment” (MCI) was first introduced in 1988 by Reisberg et al. (Reisberg et 

al., 1988) to refer to this stage, and efforts headed by Ronald Petersen at the Mayo Clinic have 

subsequently sought to clarify its neuropathological and clinical characteristics (Petersen, 2004; 

Petersen et al., 1999, 2001, 2009, 2014), leading to the publication of international MCI criteria 

by the First Key Symposium held in Stockholm, Sweden in 2003 (Winblad et al., 2004). More 

recently, in two sister publications to the 2011 NIH-AA Work Group paper (McKhann et al., 

2011), Albert et al. (Albert et al., 2011) and Sperling et al. (Sperling et al., 2011) aimed to 

outline the pre-clinical phases of AD by establishing guidelines for the diagnosis of “MCI due to 

AD” (with varying levels of certainty) and describing the stages of progression in elderly from 

asymptomatic (and without evidence of the AD pathological process) to MCI. A diagnosis of 

MCI is made for individuals who demonstrate a degree of cognitive decline in core AD-related 

domains that is not normal for age, yet who do not fulfil clinical criteria for dementia. As with a 

diagnosis of AD, it is necessary to rule out other systemic or brain conditions that may account 

for the clinical and cognitive decline observed in MCI (e.g. vascular, traumatic, or medical). 

MCI may be either amnestic (a-MCI; showing significant memory impairment) or non-amnestic 

(na-MCI; no significant memory concerns), and cognitive impairment for individuals in either 

group may be further classified as single- or multi-domain in nature (Winblad et al., 2004). 

Importantly, the diagnosis of MCI is not stable; in a multiethnic study of 2 364 individuals aged 

65 and over, only 23% of those with MCI progressed to AD  and 31% reverted to normal levels 

of cognition, with a-MCI subjects having greatest risk of progression and lowest for reversion 

(Manly et al., 2008). 

 

1.1.3 Heterogenety and Subtypes 

Before discussing AD further as a single entity, for the purposes of this thesis it is necessary to 

define it within the context of its various forms. For the remainder of this thesis, the acronym 

“AD” will refer specifically to the late-onset (sporadic) form of disease, with age-at-onset after 

65 years of age. There also exist early-onset manifestations of AD (herein EOAD), which 

includes the rare autosomal dominant familial AD (FAD, which accounts for less than 1% of all 
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AD cases and is driven by several heritable and highly penetrant mutations in key amyloid-

related genes (St. George-Hyslop et al., 1987)), which is defined only by an earlier age-at-onset 

of before 65 (Wu et al., 2012). Though the neuropathological features of AD and EOAD are 

thought to be shared, active research is pursuing the relationship between age-at-onset of AD and 

disease etiology, progression, and mortality.  

Based on non-specificity of diagnostic criteria alone, the heterogeneity in clinical presentation of 

AD is understandably great. However, when one considers the range of etiopathologies and 

individual progression profiles of those diagnosed with AD, the story becomes considerably 

more complex. The phenotypic heterogeneity of AD has been recognized for over half a century; 

in 1969, Carrick McDonald differentiated a group of 57 female AD patients into  a “parietal 

group”, featuring primarily praxis, visual construction, and cortical sensation deficits, and a 

“benign memory dysfunction of aging” group, who had predominant memory dysfunction, later 

age-at-onset, and slower disease progression (C. McDonald, 1969). In the 1980s, Martin et al. 

suggested that AD pathology may lead to multiple distinct neuropsychological syndromes 

(Martin et al., 1986), eroding the then widely-held belief that subtypes of AD were just 

mislabeled cross-sectional observations of a singular AD process at different stages (Ritchie & 

Touchon, 1992). Subsequently, Fisher et al. demonstrated that three distinct 

neuropsychologically-defined subtypes of AD (termed global, right, and left) had the same age-

at-onset (N. J. Fisher et al., 1996) and were longitudinally stable (N. J. Fisher et al., 1997), which 

helped solidify the concept of  truly distinct AD subtypes. More recently, it has been recognized 

that AD may present with more focal symptoms resulting from regionally-specific pathologies 

(Kramer & Miller, 2000), and that neuropathologically-defined subtypes of AD can be 

consistently identified based on the relative locations and extents of neuropathological lesions 

(Murray et al., 2011).  

Subtyping efforts have mostly focused on either symptoms (more subjective) or neuropathology 

(objective). Neuropsychiatric symptoms, which are experienced by 80-90% of AD subjects (with 

estimates as high as 97%) (Steinberg et al., 2004, 2008) and include behavioural, psychotic, and 

mood disturbances (Lyketsos et al., 2011), have also commonly been used to identify AD 

subtypes. Recently, eight separate cognitive subtypes of AD were identified using latent class 

analysis; in 938 probable AD patients, these cognitive subtype clusters were correlated with 

neurobiological and demographic markers (N. M. E. Scheltens et al., 2015). As recently 
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reviewed by Nowrangi et al. (Nowrangi, Lyketsos, & Rosenberg, 2015), the literature on 

groupings according to neuropsychiatric symptoms most often identifies three clusters of 

subjects; those experiencing 1) behavioural dysfunction, 2) psychosis, and 3) mood disturbance. 

Identifying the neuronal circuitry underlying these complex symptoms is an active area of 

investigation. Due to disparity in methodologies used to assess symptoms and pathologies, 

results of subtyping efforts across studies have largely not unified; however, a few subtypes of 

AD patients who may represent distinct underlying disease processes have been more reliably 

identified by multiple lines of evidence, and they are described below. 

A set of AD subtypes with convergent lines of evidence (symptoms and neuropathology), 

recently summarized by Lam et al. (Lam, Masellis, Freedman, Stuss, & Black, 2013), include: 

typical AD (aka classic onset; predominantly amnestic, associated with hippocampal and 

temporo-parietal atrophy and/or decreased perfusion/metabolism – 6% of typical AD subjects 

present with early onset, compared to 32% of non-typical (Koedam et al., 2010)), temporal 

variant AD (aka focal temporal lobe dysfuntion or pure amnestic AD), left (language) variant 

AD (similar to logopenic progressive aphasia, which is often associated with AD pathology 

(Alladi et al., 2007)), right (visuoperceptive) variant AD, and frontal variant AD. Two additional 

subtypes, hippocampal sparing and limbic predominant AD, have also gained recent traction 

(Murray et al., 2011; Jennifer L Whitwell et al., 2012), however these are not mutually exclusive 

of the categories listed above and show overlap with left variant and temporal variant AD, 

respectively (Lam et al., 2013).  

Typical AD is the most common presentation of AD. It is characterized by a late onset (age 

65+), steady and uniform decline in cognitive function across domains, and symmetric and 

relatively non-specific patterns of brain atrophy and hypometabolism/hypoperfusion (though 

regions most affected are entorhinal, hippocampal and temporo-parietal) (Dubois et al., 2007; 

McKhann et al., 2011).  

Temporal variant AD is defined by a late onset (later than typical AD), isolated impairment in 

episodic memory performance (with sparing of other cognitive domains), and a slow progression 

(Butters, Lopez, & Becker, 1996); in fact, subjects presenting with focal temporal lobe 

dysfunction show little to no longitudinal change in cognition over two years (Marra et al., 

2012). Aligning with observations of subgroups of AD patients with plaque and NFT pathology 
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restricted to limbic regions (Armstrong, Nochlin, & Bird, 2000), temporal variant AD likely 

overlaps significantly with neuropathologically-defined limbic predominant AD (Murray et al., 

2011). Of particular interest for work in this thesis, it is possible that temporal variant AD 

subjects have greater cognitive reserve than typical and other atypical forms of AD; hence their 

later age-at-onset, slower rates of decline, and relative sparing of cortical degeneration. 

Left variant AD is characterized by the presentation of marked language-specific deficits that 

are inconsistent with typical AD. As temporal variant is memory-specific and involves the focal 

deterioration of limbic regions, left variant is specific to worsening non-fluent speech and 

atrophy of the left perisylvian region with relative sparing of the hippocampus/limbic regions 

(hence overlap with hippocampal sparing AD) (Galton, Patterson, Xuereb, & Hodges, 2000; 

Greene, Patterson, Xuereb, & Hodges, 1996; J. Green, Morris, Sandson, McKeel, & Miller, 

1990). The non-fluency of speech in left variant AD is a distinguishing feature from both typical 

AD and the closely related logopenic progressive aphasia (LPA); late-stage typical AD and LPA 

both show more fluent language syndromes (including slowed rate of speech, semantic 

paraphasia (erroneous substitution/use/omission of related words), impaired repetition 

(commonly in LPA), and dyslexia) compared to left variant AD-associated agrammatism and 

phenomic paraphasia (erroneous substitution/use/omission of similar-sounding words) (Gorno-

Tempini et al., 2008; B. H. Price et al., 1993). 

Right variant AD is characterized by the presentation of strong visuospatial dysfunction 

compared to other more typical deficits, and is associated with posterior cortical atrophy (Tang-

Wai et al., 2004). The name of right variant AD comes from the longitudinal stability of distinct 

asymmetries in neuropathology and cortical atrophy that affect the right hemisphere to a greater 

degree than left (Duara et al., 1986, 1986; N. J. Fisher et al., 1997). This subtype was first 

suggested by Chase et al. (Chase et al., 1984), who found correlation between Wechsler Adult 

Intelligence Scale (WAIS) visuospatial subtest scores and right hemisphere metabolism 

(measured by [18F]Fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging 

(discussed in Section 1.3.4)) in 17 AD subjects.  

Frontal variant AD is a rare type of EOAD (total 5 frontal variant AD/163 total AD cases (3%)  

across two studies (Alladi et al., 2007; Johnson, Head, Kim, Starr, & Cotman, 1999)) associated 

with deficits in executive function in the relative absence of typical amnestic symptoms 



www.manaraa.com

9 

 

(dysexecutive syndrome), perhaps driven by a ten-fold increase in NFTs in frontal regions 

(Johnson et al., 1999), as well as behavioural symptoms (Alladi et al., 2007). Recently, it was 

proposed that frontal variant AD be renamed to “the behavioural/dysexecutive variant of AD” 

based on observations that frontal gray matter is in fact spared in these subjects (Ossenkoppele et 

al., 2015).  

Hippocampal sparing AD was first observed in 1994 (Giannakopoulos, Hof, & Bouras, 1994) 

and involves the disproportionate atrophy of cerebral cortex compared to the hippocampus, 

which is affected to a greater degree in typical AD. Based on their neuropathological definitions, 

it is possible that the hippocampal sparing AD and limbic predominant AD subtypes represent 

distinct etiological processes rather than just neuroanatomical variations on the same process; 

recently, Josephs et al. (Josephs et al., 2015) found that TAR DNA-binding protein 43 (TDP-43, 

which is found in 19-57% of AD cases, contributes to AD cognitive deficits (Josephs, Whitwell, 

et al., 2014) and progresses topologically in stages (Josephs, Murray, et al., 2014), much like 

NFTs (H. Braak & Braak, 1997)) deposition was common in typical (59%) and limbic (67%), 

but not hippocampal sparing (21%) AD pathological subtypes; though clinical presentation was 

only affected by pathological subtype, not TDP-43. 

Efforts to subtype AD based on genetic information have largely consisted of understanding the 

differential contributions of the ε4 allele of the Apolipoprotein E gene (APOE) (Section 1.4.4). 

Because this gene variant has been found to strongly influence risk for AD (Corder et al., 1993), 

it has been of interest to examine ε4 carrier status in individuals who develop AD and look for 

differences in presentation and progression between groups. Generally, APOE ε4 is associated 

with amnestic presentation (as opposed to more frontal-based, aphasic, early-onset form) 

(Snowden et al., 2007). However, some evidence suggests that APOE ε4 is underrepresented in 

individuals with temporal variant AD (Butters et al., 1996), despite its association with 

hippocampal atrophy (Pievani et al., 2011). The effects of genetic variation on AD presentation 

and clinical/biological phenotypes will be discussed in-depth in Section 1.4. The contribution of 

genetics to AD heterogeneity is not well understood. 

In summary, it should be apparent that the aforementioned AD subtypes, while potentially 

representing distinct underlying disease processes, lie on a continuous spectrum that relies on 
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age-at-onset, co-morbid pathologies, neuropathological topology, genetic risk factors, and 

clinical presentation to determine and define their identities. 

 

1.1.4 Prevalence and Economic Impact 

AD is the most common form of dementia, accounting for 60-80% of all cases (Alzheimer’s 

Association, 2015; Barker et al., 2002), and it is estimated that currently there are 47.5 million 

people living with dementia worldwide (World Health Organization, 2015). Ferri et al. (Ferri et 

al., 2005) estimated that in 2005, 24 million individuals worldwide had dementia and that by 

2020 and 2040 this number would increase to 42 and 81 million, respectively. They also made 

observations that the prevalence and incidence rates in different areas of the world were not 

consistent; developed countries showed the highest prevalence but a slower predicted increase 

(100% between 2001-2040) compared to developing nations that had lower prevalence but 

greater predicted increase (up to 336% by 2040).  

To allow for forecasting, Brookmeyer et al. (Brookmeyer, Johnson, Ziegler-Graham, & Arrighi, 

2007) developed a multistate model of AD (including AD-specific disease progression and 

incidence rates, as well as transition probabilities between healthy and early vs. late stage AD) 

using population projections from the United Nations. They estimated that between 2006 and 

2050 the worldwide prevalence of AD would grow fourfold (from 26.6 million to 106.8 million). 

Similar to the results of Ferri et al., they found that the prevalence of AD increases exponentially 

with age, however, importantly, the estimates of Brookmeyer et al. were specific to AD rather 

than all dementia. Furthermore, using their multistate model, they were able to show that if the 

age-at-onset of AD were to be delayed by only two years, there would be approximately 22.8 

million fewer cases of disease worldwide by 2050.   

Most estimates of AD prevalence are based on static parameters of its incidence over time. The 

literature on rates of AD and dementia incidence, however, is heterogeneous, with studies 

describing increases (Ukraintseva, Sloan, Arbeev, & Yashin, 2006), no significant changes 

(Beard, Kokmen, Offord, & Kurland, 1991; Hebert et al., 2010; Rocca, Cha, Waring, & Kokmen, 

1998; Rorsman, Hagnell, & Lanke, 1986), and decreases (Hagnell, Lanke, Rorsman, Ohman, & 

Ojesjö, 1983; Kokmen, Beard, O’Brien, Offord, & Kurland, 1993; Rorsman et al., 1986) in the 
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rate of AD diagnosis over time. Some have asserted that prevalence estimates based on static risk 

remain valid, given methodological discrepancies that may explain some of this heterogeneity 

(Hebert et al., 2010). However, following these assertions, three recent reports suggested that the 

incidence of dementia is actually decreasing, likely due to modern advances in treating vascular 

disease and increasing levels of education  (Matthews et al., 2013; Qiu, von Strauss, Bäckman, 

Winblad, & Fratiglioni, 2013; Schrijvers et al., 2012). 

In recent reports of AD prevalence worldwide and in the United States and Canada  (Alzheimer’s 

Association, 2015; The Alzheimer Society of Canada, 2010; World Health Organization and 

Alzheimer’s Disease International, 2012), the message is the same: dementia and AD (either 

specifically or indirectly as the number one cause of dementia) are imminent global healthcare 

burdens, largely due to an aging population, with steadily increasing prevalence and dramatic 

costs that outweigh those forecasted for other major causes of disability and death. A recent 

systematic review and meta-analysis conducted by Prince et al. (Prince et al., 2013) found that 

the number of individuals worldwide living with dementia is expected to nearly double every 20 

years from 35.6 million in 2010 to 115.4 million in 2050, with the proportion of cases in low-

middle income countries growing from 58% to 71% over the same interval. 

As a result of increasing AD prevalence, rates of AD-related mortality and disability are 

expected to rise. Indeed this trend has already begun, and due to a lack of effective treatments for 

AD, the rise in mortality and loss of quality/duration of life is disproportionately large compared 

to other major diseases. In the United States, between 2000 and 2013, the percent changes in 

causes of death (at all ages) for breast and prostate cancer, heart disease, stroke, and HIV were 

negative (from between -2% to -52%), whereas that for AD was +71% (National Center for 

Health Statistics, 2015). A statistic used by the World Health Organization (WHO) to assess the 

loss of quality and/or length of life due to AD is disability-adjusted life-years (DALY), which is 

equal to years of life lost (YLL = number of deaths x standard life expectancy at age of death) + 

years lost to disability (YLD = number of cases x disability weight x average duration of illness). 

Using this composite metric, it was found that AD rose from the 25th most burdensome disease 

in the United States in 1990 to 12th in 2010, a greater rise than any other disease (Alzheimer’s 

Association, 2015). During the same period, and considering YLL alone, AD rose from 32nd to 

9th; again, the largest rank increase.  
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Both direct and indirect costs of dementia and AD are alarmingly high. Direct costs represent 

resources used in the care of patients with dementia (increasing with loss of autonomy and need 

for hospitalization and informal care), whereas indirect costs encompass those resources lost as a 

result of reduced productivity or work absenteeism on the part of either the patient or their 

family/caregivers (Davidson & Schnaider Beeri, 2000). In total, the worldwide cost of dementia 

was estimated to be US$315.4 billion (based on an estimate of 29.3 million affected) in 2005 

(Wimo, Winblad, & Jönsson, 2007) and US$422 billion (based on 34.4 million affected) in 2009 

(Wimo, Winblad, & Jönsson, 2010). This number rose to US$604 billion in 2010 (World Health 

Organization and Alzheimer’s Disease International, 2012). In Canada alone, total costs of 

dementia are estimated to rise from CA$14.9 billion in 2008 to CA$152.6 billion by 2038, within 

one generation (The Alzheimer Society of Canada, 2010). Clearly, based on dramatically 

increasing prevalence and costs of AD worldwide there is a need for understanding its 

modifiable risk factors and developing effective interventions for those we cannot control: 

delaying the onset of AD by only two years would result in a savings of CA$15 billion in health 

care to Canadians over a period of one decade (The Alzheimer Society of Canada, 2010). 

 

1.1.5 Progression, Risk, and Intervention 

Since there is currently no cure for AD and the process is progressive and degenerative, the 

prognosis for an individual diagnosed with AD is grim. The estimated median survival time in 

individuals who develop AD is 7.1 years (95% confidence interval (CI) = 6.7-7.5 years) 

(Fitzpatrick, Kuller, Lopez, Kawas, & Jagust, 2005), though individual survival estimates are 

quite variable and usually between 4-8 years after diagnosis (World Health Organization and 

Alzheimer’s Disease International, 2012; J. Xie, Brayne, & Matthews, 2008); cause of death is 

not easily attributable to AD, as many patients die of co-morbid conditions or accidents and 

dementia is under-reported  (Ganguli & Rodriguez, 1999; Romero, Benito-León, Mitchell, 

Trincado, & Bermejo-Pareja, 2014).  

In a study using functional assessment staging (FAST) to measure rates of decline in 648 AD 

patients (Thalhauser & Komarova, 2012), it was found that rates of decline generally followed 

two distinct distributions, fast and slow, which were stable over time (i.e. a patient progressing 

slowly initially would continue to progress slowly). Factors contributing to rates of disease 
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progression as measured by cognitive decline include psychotic symptoms, aggressive 

behaviour, sleep disturbance, and depressive symptoms (Komarova & Thalhauser, 2011; 

Mortimer, Ebbitt, Jun, & Finch, 1992; Schmeidler, Mohs, & Aryan, 1998; Storandt, Grant, 

Miller, & Morris, 2002; Zahodne, Ornstein, Cosentino, Devanand, & Stern, 2015). Over the 11-

year course of the Cache County Dementia Progression Study (DPS) (Tschanz et al., 2011; 

Tschanz, Norton, Zandi, & Lyketsos, 2013), AD subjects with a history of atrial fibrillation, 

systolic hypertension, and angina showed more rapid rates of cognitive (Mini Mental Status 

Exam (MMSE) scores) and functional decline (Clinical Dementia Rating Sum of Boxes (CDR-

SB)). Generally, poor overall medical health at baseline has also been associated with more 

rapidly-progressing symptoms (Leoutsakos et al., 2012). It was also found that myocardial 

infarction predicted faster rates of cognitive decline in individuals possessing the APOE ε4 

genetic risk factor (M. M. Mielke et al., 2011).  The literature on progression of cognitive 

symptoms in AD as they relates to APOE genotype independently, however, is not consistent; 

studies have suggested both a slower decline (Frisoni et al., 1995) and much faster (non-linear) 

decline (as well as earlier age-at-onset) (Martins, Oulhaj, de Jager, & Williams, 2005) are 

associated with APOE ε4 status, and that earlier onset patients progress more rapidly without 

APOE ε4 (van der Vlies, 2009). This discrepancy relates to a larger debate over the relationship 

of neuropathological vs. cognitive progression in AD, which will be discussed more in the 

context of AD biomarkers (Section 1.3) and genetic risk factors (Section 1.4). 

In contrast with those factors that are associated with varying rates of cognitive decline/disease 

progression, there are several well-known factors that can impact an individual’s risk for 

developing AD. Solomon et al. (Solomon et al., 2014) recently summarized the major risk 

factors for dementia and AD: increasing age, genetics (APOE ε4, other proposed risk alleles), 

vascular and metabolic conditions (including diabetes, high body mass index (BMI), and high 

midlife serum cholesterol), lifestyle (smoking and high alcohol intake), diet (saturated fats, 

homocysteine), depression, traumatic brain injury (TBI), occupational exposure (e.g. heavy 

metals), and infectious agents (e.g. HIV, Chlamydophila pneumonia). There are also a number of 

protective factors that are known to reduce an individual’s risk for AD including: younger age, 

genetics (APOE ε2, other proposed protective alleles), psychosocial factors (e.g. high education, 

socioeconomic status (SES), social engagement), lifestyle (physical activity, moderate alcohol 

intake), diet (e.g. Mediterranean diet, polyunsaturated fatty acids (PUFAs), vitamins B6, B12 and 
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D, antioxidants), and drugs (antihypertensive, statins, hormone replacement therapy (HRT), and 

non-steroidal anti-inflammatory drugs (NSAIDs)).  

Not all of these factors are modifiable, and in relation to relevance for treatment, it is important 

to identify those factors that are subject to modification and assess the costs and benefits of 

interventions targeting them in at-risk populations. In a recent comprehensive review of 75 

longitudinal studies of dementia risk factors, Di Marco et al. (Di Marco et al., 2014) define the 

key modifiable factors as 1) dietary habits, 2) leisure activities, 3) beverages consumption 

(including alcohol, juice, tea, and coffee), 4) smoking habits, and 5) social network (including 

marital status and living arrangements). Sindi et al. (Sindi, Mangialasche, & Kivipelto, 2015) 

define only three categories of modifiable factors related to AD risk: 1) vascular risk factors 

(including hypertension, smoking, and stroke), 2) nutrition, and 3) lifestyle and psychosocial 

factors. Because AD is a late-life disease, cumulative exposure is an important consideration 

when using risk factors to make predictions or inform clinical trials. For example, hypertension 

is a known risk factor for AD, but only when observed during mid-life and when taking into 

account the differing relationships of systolic and diastolic blood pressure with AD (Qiu et al., 

2013); the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) Dementia Risk Score 

was developed to provide 20-year predictions on AD risk for middle-aged individuals based on 

this (Kivipelto et al., 2006). Another example of the importance of timing came from the 

Women’s Health Initiative Memory Study (WHI-MS) (Shumaker et al., 2003) and the Kronos 

Early Estrogen Prevention Study (KEEPS) (Tsagkas & Turner, 2012) which administered HRT 

to women many years after and immediately following menopause onset, respectively. In WHI-

MS, the HRT was associated with increased risk for dementia, MCI, and vascular disease, 

whereas in KEEPS, HRT was protective against vascular disease with no effect on cognition.  

Despite many positive studies finding significant effects of modifiable risk factors on AD risk, 

the literature was heterogeneous, and in 2011, the NIH State-of-the-Science Conference panel 

evaluated work published on modifiable risk factors and AD prevention between 1984 and 2009, 

finding that there was insufficient evidence for preventative AD/dementia interventions due to 

poor quality of available data (Daviglus et al., 2011). Many explanations for the inconsistency in 

studies looking at potential AD interventions up to 2011 have been proposed including: short 

intervention durations, late intervention timing, small sample sizes, dosage differences (in cases 

where medication or nutritional supplements were evaluated), and varying definitions of 
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outcome (e.g. dementia, AD, cognition, etc.) (Coley et al., 2008; Mangialasche, Xu, & Kivipelto, 

2013). In 2011 and 2013, largely spurred by failures of 12- to 18-month drug trials for AD, and 

to address the issue of reliable outcome measures in clinical trials as a whole, the European 

Medicines Agency (EMA) and the Food and Drug Administration (FDA) approved the use of 

cerebrospinal fluid pathology (Aβ42 and tau protein) and PET (amyloid) as outcome measures to 

assess efficacy in new trials (Committee for Medicinal Products for Human Use, 2012; Kozauer 

& Katz, 2013). 

Conceptually, treatments and interventions for AD fall into three general categories: alleviating 

symptoms without affecting the underlying disease process, slowing the progression of disease 

after onset, and preventing or delaying the onset of disease. For treatment of AD symptoms, 

there are currently only four medications approved by the FDA for use in the United States and 

Canada (Craig, Hong, & McDonald, 2011; National Institute on Aging, 2015): donepezil, 

rivastigmine, galantamine, and memantine. Three of these drugs, donepezil, rivastigmine and 

galantamine, are known as acetylcholinesterase inhibitors (AChEIs), which act specifically to 

influence levels of the neurotransmitter acetylcholine, which is depleted in AD (discussed in 

Section 1.2.2). While these drugs have shown some efficacy in modestly ameliorating symptoms 

in mild to moderate AD (Lanctôt et al., 2003; Tariot et al., 2000), not all subjects respond and the 

factors determining differential response are poorly understood (Lazzaro et al., 2005; Van Der 

Putt, Dineen, Janes, Series, & McShane, 2006). In a meta-analysis of 16 clinical trials, Lanctôt et 

al. (Lanctôt et al., 2003) found that there was a statistically significant 9% increase in proportion 

of global responders to treatment using AChEIs vs. placebo, with benefits differing between 

drugs (donepezil = 3%, galantamine = 14%, and rivastigmine = 8%; though numbers of studies 

using each drug differed substantially and likely contributed to this difference). The fourth drug, 

memantine, acts on the glutamate neurotransmitter system, and either alone or in combination 

with AChEI therapy can be effective in slightly alleviating cognitive and functional impairments 

in moderate-severe AD (Reisberg et al., 2003), though not in mild AD/MCI (L. S. Schneider, 

Dagerman, Higgins, & McShane, 2011). Importantly, none of these drugs have been shown to 

effectively alter the course of disease or delay mortality and some controversy exists over their 

true clinical value and cost effectiveness (Loveman et al., 2006).   

For prevention and delay of onset, epidemiological evidence linking modifiable factors to AD 

incidence has provided the foundation for a number of clinical trials based on both 
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pharmacological and non-pharmacological interventions (Lindsay et al., 2002; Ritchie et al., 

2010). Given the aforementioned lack of firm evidence supporting changes to healthcare policy 

or medical practice (Daviglus et al., 2011), several large intervention trials combining adjustment 

of multiple modifiable risk factors were initiated, all in non-demented elderly: the Finnish 

Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER; n=1 260 

subjects, 2 year intervention + 5 year follow-up, completed in 2014) (Kivipelto et al., 2013), the 

Multidomain Alzheimer Prevention Trial (MAPT; n=1 680 subjects, 3 year intervention + 2 year 

follow-up, completed in 2014) (Carrié et al., 2012), and the Prevention of Dementia by Intensive 

Vascular Care (PreDIVA; n=3 533 subjects, 6 year intervention, to be completed in 2015) study 

(Richard et al., 2009). 

Failure has plagued the development of useful preventative AD drugs over the last several 

decades, with well over 100 failures up to 2008 (Becker, Greig, & Giacobini, 2008). As reviewed 

in detail by Schneider et al. (L. S. Schneider et al., 2014), the amyloid cascade hypothesis 

(outlined in Section 1.2.3) has been the primary informant of drug development in AD for the 

last 20 years. However, recent failures of phase 3 trials of treatments based on the clearance of 

misfolded amyloid protein (Eli Lily drug solanezumab; Pfizer and Elan drug bapineuzumab) for 

patients with mild to moderate AD (Fox, 2012; Salloway et al., 2014) have suggested that 

treatment at this stage (i.e. even at mild AD) is already too late to modify a pathological process 

that has been gathering momentum over many years.  It is now well-accepted that in order to 

maximize clinical impact, intervention studies should be planned in the presymptomatic stages of 

AD, using objective molecular biomarkers (Reiman, Langbaum, & Tariot, 2010) and cognitive 

performance as primary outcome measures. However, to maximize the impact of such trials, 

specific groups of individuals at high-risk for AD must first be studied, rather than all-comers. 

One example of such a group is the large Columbian pedigree (Pastor et al., 2003), with a known 

mutation in the presenilin-1 (PSEN1) gene, who are at high risk for EOAD. Studies suggest that 

genetic risk carriers vs. non-carriers from this pedigree, ranging from 18-26 years of age (i.e. at 

least 20 years prior to illness onset), already show differences in magnetic resonsnace imaging 

(MRI)-based measures of brain structure (Reiman et al., 2012; Sepulveda-Falla, Glatzel, & 

Lopera, 2012). In that population, it is evident that clinical intervention is required from late 

adolescence onward to halt or delay neurodegeneration, and a trial sponsored by Genetech, Inc. 

(Roche; S. San Fanciisco, CA, USA) and the Banner Alzheimer’s Institute (Phoenix, AZ, USA) 
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called the Alzheimer’s Prevention Initiative (API) is currently underway to examine the effects 

of an anti-amyloid drug (crenezumab) vs. placebo in 300 members of this population over the 

course of 260 weeks (www.clinicaltrials.gov; NCT019988410). Another major trial with study 

sites in the United States and Canada, sponsored by the Dominantly Inherited Alzheimer’s 

Network (DIAN) and NIH, is currently recruiting individuals with known AD-causing 

autosomal-dominant mutations (or a first-degree relative with FAD) to test the efficacy of anti-

amyloid therapy (gantenerumab and solanezumab) in preventing AD (NCT01760005; scheduled 

to end in March 2017). Finally, the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s 

Disease Trial (A4 Trial), headed by Reisa Sperling (Harvard Medical School, Boston, MA, 

USA), is an international, multi-center trial currently being conducted by the Alzheimer’s 

Disease Cooperative Study (ADCS), with sites in the United States, Canada, and Australia. The 

goal of the A4 trials is to test the efficacy of solanezumab vs. placebo at preventing AD in 1000 

adults between 65 and 85 years of age who have normal cognition yet show brain amyloid 

accumulation as measured by [18F]Florbetapir PET imaging (Sperling, Rentz, et al., 2014). 

The shift in focus from disease-modifying therapies to disease-preventing or -delaying 

interventions has come largely from our understanding of the process underlying AD as one that 

is active throughout the lifespan and likely unstoppable once symptoms have emerged. However, 

the central importance of the misfolded amyloid that is the target of recent trials is not 

unequivocally supported; substantial evidence implicates other molecules, mechanisms and 

potentially modifiable pathways in the etiopathogenesis of AD (Section 1.2). In an expansive 

review, Mangialasche et al. (Mangialasche, Solomon, Winblad, Mecocci, & Kivipelto, 2010) 

summarize the landscape of AD drug development as of 2010, demonstrating that efforts are 

underway to test many facets of the AD pathological process including both cholinergic (Section 

1.2.2) and non-cholinergic neurotransmission (e.g. dopamine, serotonin, norepinephrine), 

amyloid production, aggregation, and clearance (Section 1.2.3), tau protein phosphorylation and 

aggregation (Section 1.2.4), and neuroplasticity (i.e. release of brain-derived-neurotrophic factor 

(BDNF)). In addition, drug interventions targeting inflammatory processes in AD (Section 1.2.6) 

have been of great interest due to the availability of approved anti-inflammatory medications, 

though evidence for their efficacy and safety is not consistent (Jaturapatporn, Isaac, McCleery, & 

Tabet, 2012; McGeer, Schulzer, & McGeer, 1996). 
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1.2 Prominent Hypotheses/Mechanisms of Alzheimer’s Disease 
Etiology and Progression 

1.2.1 Background 

In order to understand the mechanisms behind known AD risk factors it is essential to first have 

an understanding of the neuropathological mechanisms at work in AD. Fundamentally, AD is a 

disorder of synapse loss resulting in brain dysfunction. The number of synapses relative to 

neurons decreases as the disease progresses and this is the principal biological correlate of 

disease severity (Selkoe, 2002). There are currently several biochemical pathways and 

neuropathological mechanisms that are thought to relate to AD risk and/or progression including: 

loss of acetylcholine-specific neurotransmission (cholinergic), beta-amyloid (Aβ) protein 

accumulation and aggregation (amyloidogenic), tau protein hyperphosphorylation and 

microtubule degeneration (tauopathic), cerebrovascular changes (vascular), and immune 

response irregularities/chronic neuroinflammation (inflammatory). This section (1.2) aims to 

describe the events leading to the construction of each hypothesis and summarize our current 

state of knowledge regarding its involvement in AD. 

It should be acknowledged that the list above is not exhaustive; there are many other hypotheses 

of AD etiology and pathogenesis that have garnered varying degrees of attention over the last 

several decades. Notably, these include the glutamatergic hypothesis (Maragos, Greenamyre, 

Penney, & Young, 1987), the oxidative stress hypothesis (Markesbery, 1997), and the 

mitochondrial cascade hypothesis (Swerdlow & Khan, 2004). While these will not be discussed 

at length, it is worth mention that the only non-cholinergic pharmacological intervention 

approved by the FDA for the treatment of moderate-severe AD is memantine, an N-methyl-D-

aspartate glutamate receptor (NMDAR) antagonist discovered in 1968 that works by regulating 

the activity of glutamate. According to the gluatamatergic hypothesis of AD, excitotoxicity of 

excess glutatmate released from damaged neurons causes the degeneration of pyramidal neurons 

in the cortex and hippocampus that are important for cognitive function (Butterfield & 

Pocernich, 2003). Mementine blocks NMDAR binding sites quickly and in a dose-dependent 

manner, allowing for minimal effects on physiological glutamate signaling which was the cause 

of intolerable side effects in other NMDAR-blocking drug trials (Lipton, 2006; Thomas & 

Grossberg, 2009). Mitochondrial dysfunction as it relates to oxidative stress and AD pathology 

will be discussed within the context of other mechanisms where appropriate. 
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An issue with defining distinct models of AD etiopathogenesis is that there exist no real 

boundaries between these pathways in the brain (e.g. alterations in neurotransmission impact 

oxidative stress pathways that are intimately tied to vascular changes), and so the definitions of 

the pathways outlined in this section are merely historically-based labels of evidence pools that 

largely relate to a central system or concept. It is increasingly being recognized that pathologies 

in dementia patients are most often mixed (J. A. Schneider, Arvanitakis, Bang, & Bennett, 2007), 

and that the blending of these pathologies has significant impacts on the heterogeneity in AD 

(discussed in Section 1.1.3). With this in mind, it is important to consider that each of the 

pathways/mechanisms described below occur simultaneously and interactively within the same 

individual. 

 

1.2.2 Cholinergic 

The cholinergic hypothesis of AD was born from work in the 1960s and 1970s seeking to 

identify a neurochemical signature of AD, similar to the dopaminergic deficits observed in 

Parkinsons’s disease (Bernheimer, Birkmayer, Hornykiewicz, Jellinger, & Seitelberger, 1973). 

The hope was that this would to lead to the development of novel pharmacological interventions 

for AD (Francis, Palmer, Snape, & Wilcock, 1999). Early evidence of substantial loss of choline 

acetyltransferase (ChAT) (Bowen, Smith, White, & Davison, 1976; P. Davies & Maloney, 

1976), the enzyme responsible for synthesizing the neurotransmitter acetylcholine (ACh), was 

paralleled by studies revealing the important role of acetylcholine in cognition (specifically 

deleterious effects of scopolamine, an anticholinergic drug, on memory performance (Drachman 

& Leavitt, 1974) that could be reversed upon treatment with the anticholinesterase 

physostigmine (Bartus, 1978)). Paired with the established function of neocortical cholinergic 

neurotransmission in learning and memory (Deutsch, 1971), and observations of a marked loss 

of cholinergic neurons in the basal forebrain of patients with AD (Whitehouse et al., 1982), this 

led researchers to hypothesize that the degradation of cholinergic neurons and deficits in 

cholinergic neurotransmission were significant contributors to cognitive deterioration in AD.  

Studies in the late 1980s and early 1990s examined all aspect of cholinergic neurotransmission in 

relation to the risk for AD and progression of symptoms, finding evidence both for and against 
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the specificity for and necessity of cholinergic deficits in AD; these studies can mostly be 

grouped as those investigating ACh levels in brain tissue (either directly or by measuring ChAT 

activity), muscarinic cholinergic receptor density, and lesion studies of cholinergic neurocircuitry 

in animal models (Contestabile, 2011).  While early studies showed that ChAT activity was 

consistently lower in AD patients vs. age-matched controls, other studies focusing on muscarinic 

acetylcholine receptor density converged to suggest that there were no AD-specific effects, only 

those associated with normal aging (Bartus, Dean, Beer, & Lippa, 1982). Contradicting the role 

of cholinergic system deficits in AD pathogenesis, it has also been shown that the number of 

cholinergic neurons in the nucleus basalis of Meynert is not different between cognitively normal 

and MCI patients (Gilmor et al., 1999) and that ChAT activity is actually increased in the frontal 

cortex and hippocampus of MCI patients (DeKosky et al., 2002). 

Despite contradictory findings in the field, the moderate success of acetylcholinesterase 

inhibitors (AChEIs) in alleviating memory deficits in trangenic animal models (Benzi & Moretti, 

1998) led to the development of cholinesterase inhibitor drugs for the treatment of AD symptoms 

in humans (discussed in Section 1.5). The relative ineffectiveness of AChEIs in reducing risk for 

or delaying age-at-onset of AD, however, has fueled skepticism over the true relevance of 

achetylcholine in AD etiology, and many believe that the failure of AChEIs to cure AD has 

provided definitive evidence against the cholinergic hypothesis. With the emergence of the 

amyloid cascade hypothesis in the mid-1990s (discussed in the next section) and evidence 

suggesting that cholinergic deficits may be a secondary result of amyloid toxicity (Roberson & 

Harrell, 1997), the popularity of the cholinergic hypothesis of AD saw substantial decline and a 

shift took place in the field toward understanding the interaction of cholinergic activity and 

amyloid deposition (X. Zhang, 2004). 

More recently, multiple revisions have been proposed to the cholinergic hypothesis. Substantial 

evidence points to ACh as a moderator of the release of brain growth factors (neurotropins), 

especially the expression of BDNF in the hippocampus (Ferencz et al., 1997; Kokaia et al., 

1996). Craig et al. (Craig et al., 2011) emphasize the neuroplastic roles of ACh and suggest that 

the cholinergic depletion observed in AD may prevent the brain from adequately compensating 

for subthreshold pathogenic insults and injury such as minor stroke, ischemia, and epileptiform 

activity. The role of ACh as an age-related moderator of neuronal plasticity is attractive as it 

supports theories of brain susceptibility to AD-related pathogenesis that align with its depletion 
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in AD and the increase in AD risk associated with age -- the so-called “co-factor” theory (R. J. 

McDonald, 2002).  

In summary, it is now accepted that cholinergic deficits, while characteristic of late stage AD 

and important to the neurobiological processes underlying its cognitive symptoms, are secondary 

to etiopathogenic factors that have yet to be understood. ACh may play an important role in 

modulating neuroplastic compensation for AD pathology. 

 

1.2.3 Amyloidogenic 

The Amyloid cascade hypothesis was first proposed by John Hardy in 1992 (Hardy & Higgins, 

1992). This hypothesis stemmed from seminal work in the 1980s finding that the “senile” 

plaques defining AD pathology were made of Aβ peptide and that genetic linkage studies of 

FAD pointing to chromosome 21 were in fact tagging mutations in the Aβ precursor protein gene 

(APP; chr21q21.3). Further evidence came from Levy et al. (Levy et al., 1990), who found that 

mutation in APP could cause cerebral hemorrhage with amyloidosis (Dutch type), demonstrating 

that APP changes could directly result in cerebrovascular amyloid deposition. 

The hypothesis states that neurodegeneration in AD is caused by accumulation and aggregation 

of the Aβ peptide, which forms the plaques required for its diagnosis. This accumulation can 

occur either via overproduction of Aβ resulting from aberrant APP processing or via deficiencies 

in the clearance of Aβ from the brain. This imbalance of Aβ production and clearance, according 

to the original hypothesis, is the driver of all other pathologies seen in AD, including 

neurofibrillary tangle deposition, chronic inflammation, and cerebrovascular disease (Hardy & 

Higgins, 1992; Hardy & Selkoe, 2002). 

The processing of APP can be either non-amyloidogenic (does not produce Aβ) or 

amyloidogenic (produces Aβ) (reviewed in detail by Wilquet and De Strooper (Wilquet & 

Strooper, 2004)). In non-amyloidogenic processing, newly synthesized APP is quickly 

transported to the neuronal surface at synaptic terminals (Koo et al., 1990) and is proteolyzed by 

α-secretase to form soluble sAPPα, which precludes further potentially pathogenic processing. In 

amyloidogenic processing, APP is internalized into endosomes (Kinoshita et al., 2003) and 



www.manaraa.com

22 

 

cleaved by β-secretase (BACE1) and γ-secretase to form Aβ. Different forms of Aβ (discussed 

below) tend to aggregate and form insoluble amyloid fibrils that then form plaques. An active 

area of research is concerned with understanding why some APP is processed at the cell surface 

and why some is internalized; the retromer complex of molecules (with which the sortilin-like 

receptor (SORL1) is associated), responsible for the recycling of APP from endosomes to the 

cell surface via the trans-golgi network, may play an important role (Q.-Y. Zhang, Tan, Yu, & 

Tan, 2015).  

The forms of Aβ most studied in relevance to AD pathology are the 40- and 42-amino acid 

length forms (Aβ40 and Aβ42, respectively), both produced by γ-secretases. Aβ40 accounts for 

approximately 90% of all Aβ released from neurons and increases significantly only in the late 

stages of AD. In contrast, Aβ42 accounts for 10% of secreted Aβ, is found in the early stages of 

disease, and is found in greatest concentrations in the neuritic plaques associated with AD (likely 

due to their higher propensity for aggregating into insoluble fibrils) (Citron et al., 1996; Roher et 

al., 1993). Neuritic plaques (also called “senile”, “dense core”, or “mature”) are large 

extracellular fibrous deposits seen by microscope when stained using any number of 

immunohistochemical agents. They are made of dystrophic neurites (that is, remnants of neurons 

that have lysed), active microglia (the brain's resident immune cells, discussed in Section 1.2.6), 

and a dense Aβ42-rich core. While these neuritic plaques are required for the postmortem 

diagnosis of AD (along with NFTs), they are not the only type of Aβ plaque. Diffuse amyloid 

plaques (also “burned-out”, “immature”, or “cotton wool”) are in fact the most abundant form of 

amyloid deposit found in the brain (Yamaguchi, Hirai, Morimatsu, Shoji, & Harigaya, 1988). 

However, diffuse plaques are not considered in the diagnosis of AD, as they do not include 

dystrophic neurites or accumulations of glial cells, and do not appear to have pathological effects 

on neurons situated within them (H. Braak & Braak, 1991; D’Andrea & Nagele, 2010). Once 

thought to be only a stage of neuritic plaque formation, diffuse plaques are often found in healthy 

aging and have been proposed to signal a shift in the amyloid cascade from pathological to non-

pathological amyloid deposition. Finally, even though extracellular neuritic plaques have clear 

association with AD progression and are required for its diagnosis, it seems the small soluble 

oligomeric forms of Aβ (2-6 peptides in length, found pooled within neuritic plaques), and 

intracellular Aβ42  (LaFerla, Green, & Oddo, 2007) are likely the true pathogenic factors (Walsh 

et al., 2002). 
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Following the initial description of the amyloid cascade hypothesis, a number of key pieces of 

evidence emerged supporting it (outlined by Hardy and Selkoe (Hardy & Selkoe, 2002)). First, 

mutations in the genes encoding for the gamma secretase enzyme subunits responsible for 

processing APP (PSEN1 and PSEN2) were shown to cause FAD (Levy-Lahad et al., 1995; 

Rogaev et al., 1995; Sherrington et al., 1995), likely though altered APP metabolism and Aβ42 

deposition (Karen Duff et al., 1996). Second, mutations in the gene encoding for the tau protein 

(MAPT; chr17q21.1) were found to cause the non-amyloidogenic frontotemporal dementia with 

parkinsonism (Hutton et al., 1998), suggesting that severe pathological alterations in tau 

(resulting in NFT deposition and neurodegenration) are not sufficient to generate amyloid 

plaques found in AD. Third, transgenic mice expressing mutant forms of both APP and tau show 

increased NFT deposition compared to those only expressing mutant tau (J. Lewis et al., 2001), 

suggesting that Aβ is necessary for and precedes NFT-related neurotoxicity. Fourth, transgenic 

mice overexpressing mutant APP showed reductions in Aβ deposition when crossed with mice 

deficient for APOE (Bales et al., 1997), suggesting that the unequivocal APOE genetic risk 

factor for AD possibly conferred such risk through alteration of Aβ metabolism. Fifth, early 

genetic association and quantitative trait loci (QTL) studies scanning the genome for regions in 

which mutation influences risk for late-onset AD identified regions other than chromosome 21 

that were also associated with Aβ42 levels (Kehoe et al., 1999; Myers et al., 2000), and Aβ 

neurotoxicity has been demonstrated in cultured neurons (Whalen, Selkoe, & Hartley, 2005) and 

mouse models (Shankar et al., 2008). Finally, preliminary results of the Biogen-sponsored 

(Cambridge, MA, USA) PRIME trial clinical (NCT01677572) of the experimental anti-amyloid 

drug Aducanumab (BIIB037) in Aβ-positive early AD subjects showed improvement of 

cognition in some subjects. Even more recently, the Eli Lilly and Company-sponsored 

(Indianapolis, IN, USA) EXPEDITION–EXT clinical trial (NCT01127633), an extension of the 

failed solenazumab trials, demonstrated a modest disease-modifying effect in mild AD (Karran, 

2015). 

Despite the evidence in favour, a number of important contradictory observations have been 

made that dispute the amyloid cascade hypothesis. Karl Herrup recently provided a critical 

review of the hypothesis, summarizing weaknesses exposed from genetic, biochemical, animal 

model, pathological, clinical, and epidemiological lines of inquiry (Herrup, 2015).  First, no 

mutations in α-secretase have been found to influence risk for FAD. Second, mouse models 



www.manaraa.com

24 

 

expressing only Aβ do not develop dementia-like symptoms and the perturbation of biochemical 

pathways other than amyloidogenic (inflammatory, vascular) are sufficient to induce dementia 

(Webster, Bachstetter, Nelson, Schmitt, & Van Eldik, 2014). Third, AD mouse models do not 

show appreciable neurodegeneration. Treatments often induce full reversal of quick-onset 

cognitive and behavioral changes, which demonstrates the inability of transgenic mice to 

accurately model human AD (Dodart et al., 2002; J. Xu et al., 2014). Fourth, NFTs show better 

correlation with neurodegeneration than plaques (discussed in Section 1.2.4) and many 

cognitively normal elderly are found to show significant Aβ pathology before (Villemagne et al., 

2011) and after death (Davis, Schmitt, Wekstein, & Markesbery, 1999). Finally, results from 

clinical trials showing the ineffectiveness of Aβ clearance after symptom onset, the failure of 

aforementioned phase 3 anti-amyloid trials, and the partial successes of interventions acting on 

supposed downstream processes all point toward amyloid as a secondary, rather than causal 

pathogenic event. Herrup also cautions that the field’s reliance on the amyloid cascade 

hypothesis has resulted in circular logic that may hamper progress whereby the definition of 

disease depends on plaque deposition (i.e. amyloid positivity without dementia is thought to 

represent “preclinical AD”, rather than a potentially distinct condition).  

Nonetheless, a majority of scientists in the field are compelled by the evidence for involvement 

of Aβ as an important contributor to the risk for and progression of AD, though most now 

acknowledge the complexities of the underlying causal pathways that lead to AD and understand 

that a more nuanced model is required. Accordingly, several revisions to the amyloid cascade 

hypothesis have been proposed. Karran et al. (Karran, Mercken, & De Strooper, 2011) outline 

possible mutually exclusive roles of Aβ in AD: those as a “trigger”, “threshold”, or “driver” of 

resultant tau protein-related pathology and neurodegeneration. While accumulating evidence 

(discussed above) seems to reject the “trigger” role of Aβ in AD pathogenesis (which is a central 

tenet of the original amyloid cascade hypothesis), the possibility that various Aβ species function 

either at threshold or continuously to drive AD pathology remains viable. Alternatively, McGeer 

and McGeer (McGeer & McGeer, 2013) have proposed an “amyloid cascade-inflammatory 

hypothesis” of AD etiopathology that emphasizes the importance of the Aβ-driven inflammatory 

response (discussed in Section 1.2.6). This demonstrates the growing trend toward viewing 

pathogenic mechanisms as concurrent and interdependent, rather than isolated. 
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Further revision of the amyloid cascade hypothesis is necessitated by studies examining normal 

physiological roles of amyloid. The model that more Aβ is bad and less is good does not 

accurately capture the current state of knowledge on the non-toxic cellular functions of Aβ and 

APP (reviewed by Atwood et al. (Atwood et al., 2003)). Evidence that conditions of ischemia 

(Jendroska et al., 1995), hypoglycemia (Shi, Xiang, & Simpkins, 1997), and traumatic brain 

injury (Murakami et al., 1998) can induce the overexpression of APP and a shift from non-

amyloidogenic to amyloidogenic processing support a protective role of amyloid in disease. APP 

has been shown to modulate neurotrophic signaling (Hasebe et al., 2013) and is necessary for the 

maintenance of neuronal integrity in hippocampus of mice (Tyan et al., 2012). Despite the ability 

of Aβ peptide to induce oxidative stress, confusingly it also has anti-oxidant properties thought 

to be a response to intracellular increases in transition metals (in particular copper) that catalyze 

the generation of reactive oxygen species (ROS) (Opazo et al., 2002; Sinha, Bhowmick, 

Banerjee, & Chakrabarti, 2013). The structure of the Aβ42 peptide makes it an effective chelator 

of these transition metal ions and thus may act to inhibit the catalysis of damaging ROS (Atwood 

et al., 2000). However, the aggregation of Aβ ablates its oxidative functions and results in 

toxicity to mitochondria via mechanisms that are independent of effects on ROS (e.g. membrane 

depolarization). An explanatory model proposed by Anatol Kontush (Kontush, 2001) suggests 

that the early protective amyloid response generates Aβ-metal complexes as ROS-generating 

ions are chelated. This leads to the production of both highly-toxic Aβ oligomers and non-toxic 

diffuse amyloid plaques, which are inversely correlated with oxidative damage (Nunomura et al., 

2000) and may function to encapsulate and deactivate Aβ oligomers (Cuajungco et al., 2000). As 

the underlying disease processes progresses, the production of Aβ oligomers overcomes the 

counteractive detoxifying effects of diffuse plaques, neurons degenerate, neuritic plaques begin 

to form, and cognitive decline begins. 

In summary, the amyloid cascade hypothesis has provided some of the most compelling and 

actionable evidence for AD etiopathogenesis to date. However, recent studies have called into 

question the causal role of Aβ in AD, instead postulating that its accumulation may be a 

secondary effect of earlier causal events underlying the disease. Depending on the stage of 

amyloid deposition, Aβ peptides may exert beneficial or detrimental effects on cellular viability.  
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1.2.4 Tauopathic 

In 1986 it was discovered that the NFTs found in AD brain were composed of the microtubule-

associated protein tau, which was organized in polypeptides to form paired helical filaments 

(PHFtau) (Grundke-Iqbal et al., 1986). The importance of tau dysfunction in neurodegeneration 

was demonstrated following the discovery that mutations in the gene encoding tau (MAPT) could 

cause frontotemporal dementia with parkinsonism (Hutton et al., 1998) – as mentioned 

previously this was taken by some as evidence supporting the amyloid cascade hypothesis, due 

to lack of amyloid deposition in this disease (Section 1.2.3).  

The normal function of tau in the brain is promoting the assembly of tubulin and maintaining the 

stability of resulting microtubules, which act as essential structural scaffolds and intracellular 

transport networks (Drubin & Kirschner, 1986). When tau is hyperphosphorylated (by any of 

several kinases including glycogen synthase kinase-3 (GSK3), cyclin-dependent protein kinase-5 

(cdk5), and mitogen activated protein ERK 1/2 (T. J. Singh, Grundke-Iqbal, McDonald, & Iqbal, 

1994)), it fails to interact with tubulin, thereby destabilizing microtubules (Alonso, Zaidi, 

Grundke-Iqbal, & Iqbal, 1994). This hyperphosphorylated tau is thought to be responsible for the 

breakdown of microtubules (which are more abundant in neurons than any other tissue) and 

subsequently aggregates into PHFtau and NFTs (Köpke et al., 1993; Vincent, Zheng, Dickson, 

Kress, & Davies, 1998), though some evidence shows that microtubule number and length are 

reduced in AD compared to controls in a manner that is not correlated with PHFtau (Cash et al., 

2003). Once the NFT has elicited cytotoxic effects on its host neuron (mechanisms include 

impaired axonal transport, DNA damage, chromatin remodeling, mitochondrial dysfunction, and  

aberrant cell cycle activation (Frost, Götz, & Feany, 2015)), the neuron degrades, lyses, and 

releases it into extracellular space, resulting in a so-called “ghost tangle”, which is considered 

highly indicative of neurodegeneration (F. Braak, Braak, & Mandelkow, 1994). 

In 1991, Heiko and Eva Braak used advanced silver staining techniques in the brains of 83 

demented and non-demented subjects to describe the topological and temporal progression of 

AD pathology, identifying distinct stages of both amyloid and NFT deposition corresponding 

loosely to the relative cognitive progression of the illness (H. Braak & Braak, 1991). 

Importantly, they noticed that the presence of NFTs generally preceded that of neuritic plaques 

and that, in contrast to neuritic plaques which were often present in non-demented brains and 
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showed inconsistent distributions and densities, NFTs had a well-defined pattern that allowed 

them to identify six stages of pathological progression correlating strongly with disease status 

and loss of neurons in gray matter (commonly referred to as “Braak stages”). The stages include 

“transentorhinal” (I/II; usually clinically silent), “limbic” (III/IV; early AD or MCI), and 

“isocortical” (V/VI; AD dementia), where roman numerals indicate both early and late sub-

stages (six total).  

The very early detection of NFTs and staging of AD well before symptoms emerge have drawn 

attention to the lack of understanding of what differentiates healthy aging with AD-related 

neuropathology from AD itself. The instability of the earliest phases of AD (i.e. the tendency for 

individuals with MCI to not progress to AD or even revert to normal (Manly et al., 2008)) add 

uncertainty to the meaning of NFT-specific pathology. 

In summary, strong evidence supports the idea that tau-related pathology precedes Aβ-related 

pathology; however, it is clear that both are required to cause the cognitive deficits and 

neurodegeneration seen in AD. Further, despite the causal role of amyloid in FAD and of tau in 

FTD with parkinsonism-17 (FTDP-17), the presence of either and/or both are only risk factors 

for late onset AD and some evidence suggests that microtubule changes may even precede the 

hyperphosphorylation of tau. 

 

1.2.5 Vascular 

For most of the 19th century, long before the introduction of the term Alzheimer’s disease, it was 

thought that arteriosclerosis – the narrowing and hardening of blood vessels - was the primary 

driver of brain dysfunction associated with senile dementia (Beach, 1987; Loeb, 1995). In fact, 

the brain of patient Auguste D was noted as having arteriosclerotic changes in addition to plaque 

and tangle pathology (Alzheimer et al., 1995). In 1955, Martin Roth published a study examining 

hospital records for 464 patients with different forms of psychosis; patients included those with 

“senile psychosis”, similar to a modern description of AD, and “arteriosclerotic psychosis”, 

which denotes more focal, fluctuating symptoms likely due to cerebrovascular disease, and 

characterized by “emotional incontinence, the preservation of insight, or epileptiform seizures” 

(Roth, 1955). Roth noticed significant differences in short-term (6-month) outcomes between the 
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arteriosclerotic and senile psychosis patients that were not due to age, providing the first indirect 

evidence for a clinical distinction between AD and a vascular dementia (VaD). In an attempt to 

clarify the difference between AD symptoms resultant from vascular changes and those as a 

result of a non-AD dementia, the National Institutes of Health/National Institute of Neurological 

Disorders and Stroke (NIH/NINDS) guidelines currently make the distinction between vascular 

cognitive impairment (VCI) (Moorhouse & Rockwood, 2008) and vascular dementia (VaD). 

This classification unfortunately suffers from some of the same circular logic plaguing the 

definition of pre-clinical AD (i.e. the presence of pathology in cognitively normal individuals 

defining a pre-emergent form of AD). 

The recognition of cerebrovascular pathology in patients with AD (Vermeer et al., 2003), 

combined with evidence from epidemiological studies finding common risk factors for vascular 

disease and AD (e.g. diabetes mellitus, midlife hypertension, and hyperlipidemia; outlined in 

Section 1.1.5) (Luchsinger et al., 2005), has led to two hypotheses: 1) vascular changes generate 

risk for AD neuropathology and hence AD diagnosis, and 2) vascular changes generate risk for 

parallel cerebrovascular pathology that contribute to the likelihood of dementia. 

The etiopathogenic vascular hypothesis of AD (hypothesis 1) essentially states that 

cerebrovascular changes, including stiffening of blood vessels, cause restriction of cerebral blood 

flow and hypoperfusion. This hypoperfusion is thought to be the driver of secondary energy 

crises that lead to other pathological cascades. Strong proponents of this hypothesis (notably 

including Juan-Carlos de la Torre) assert that vascular deficits can fundamentally explain all 

facets of AD pathology, whereby microcirculatory disturbance of oxygen and glucose delivery to 

brain tissue causes early ischemic changes in oxidative phosphorylation and ATP generation that 

lead to an immune response (discussed in Section 1.2.6) and reactive overexpression of APP, 

leading to plaque pathology, cytoskeletal damage and NFT formation (de la Torre, 2002, 2002, 

2004, 2012; de la Torre & Mussivand, 1993).  

Others have contested the etiopathogenic role of vascular irregularities in AD, citing critical 

literature suggesting that oxidative stress precedes pathogenic changes in cerebrovascular 

endothelium and resulting inflammation. It has been shown that amyloid-related cerebrovascular 

dysfunction in transgenic mice can be rescued by the application or up-regulation of superoxide 

dismutase (a potent free radical scavenger) (Iadecola et al., 1999). This is consistent with 
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evidence that mitochondrial dysfunction is a primary driver of early AD pathogenesis (an old and 

enduring concept (Quastel, 1932; Swerdlow & Khan, 2009)), including observed dysregulation 

of mitochondrial fission and fusion proteins in AD (Xinglong Wang et al., 2009), altered glucose 

metabolism in early AD (Minoshima et al., 1997), and abnormalities in critical mitochondrial 

enzymes in young APOE ε4 carriers (Valla et al., 2010) and elderly MCI subjects 

(Chandrasekaran et al., 1994). Further, it is not clear if arteriosclerotic damage can lead to 

cognition-impacting ischemia in AD in the absence of more developed lesions, such as infarcts 

(Bangen et al., 2015). 

The idea that vascular pathology (driven either by early vascular changes or other AD 

pathological cascades (i.e. pre-tangle hyperphosphorylated tau, oligomeric Aβ, or mitochondrial 

dysfunction) additively influences risk for cognitive deficits and dementia when present 

alongside AD-related pathology (hypothesis 2) has gained traction in recent years. Bangen et al. 

(Bangen et al., 2015) conducted an autopsy study of 602 subjects ages 36-104, comparing 

antemortem vascular risk with postmortem cerebrovascular changes (including lacunar infarcts, 

microinfarcts, arteriosclerosis, and atherosclerosis in the circle of Willis), AD-related 

neuropathology, and cognition. They found that antemortem vascular risk score was predictive of 

postmortem cerebrovascular changes, but not AD severity or AD-related amyloid deposition 

(including amyloid deposited around blood vessels, known as cerebral amyloid angiopathy 

(CAA)). This study highlights three major challenges of assessing the debate over the 

etiopathogenic vs. concomitant role of vascular pathology in AD, which is still unresolved (Chui, 

Zheng, Reed, Vinters, & Mack, 2012). First, undetected cerebrovascular pathology (such as 

silent brain infarcts) may cause symptoms labelled as AD – most cases of probable AD are found 

to have comorbid vascular pathology postmortem (J. A. Schneider et al., 2007; J. A. Schneider, 

Arvanitakis, Leurgans, & Bennett, 2009). Second, autopsy studies of convenience samples likely 

have intrinsic selection biases including reasons for the subjects seeking medical attention, 

reasons for autopsy consent, and restrictive inclusion criteria (Chui et al., 2012). Third, the link 

between AD-related (i.e. Aβ and NFT) and vascular pathology is complex and not easily 

modeled; it has been shown in mouse models that an increased ratio of Aβ40 to Aβ42 may 

determine a preference for amyloid plaques to form around vasculature (CAA or parenchymal 

amyloid (possibly due to differential extracellular movement of Aβ species) (Herzig et al., 2004), 
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and CAA may interact with other non-vascular-specific AD pathology to influence cognitive 

deficits in AD (Pfeifer, White, Ross, Petrovitch, & Launer, 2002). 

In summary, cerebrovascular pathologies such as arteriosclerosis and cerebral infarcts are 

present in AD cases to a greater degree than in age-matched controls and contribute to symptom 

severity. Whether these pathologies cause or occur in parallel to AD pathology is unclear; 

vascular changes associated with AD are difficult to disentangle from neuroinflammatory 

processes, as they modulate and exert neurodegenerative effects via each other. 

 

1.2.6 Inflammatory 

The term “inflammatory hypothesis of AD” is quite new, first coined by Dimitrije Krstic and 

Irene Knuesel in 2013 (Krstic & Knuesel, 2013); however, Sheng et al. (Sheng et al., 1996) first 

proposed that an inflammatory cytokine (IL-1) may be a driver of AD pathogenesis in 1996. 

Despite the recent attention it has received, neuroinflammation is as much a hallmark of AD 

pathology as Aβ plaques and NFTs and was described in Alzheimer’s initial case report in 1907 

(Alzheimer et al., 1995). As noted in Section 1.2.3, neuritic plaques are composed of a dense Aβ 

core surrounded by dystrophic neurites and active microglia, the brain's resident immune cells 

(Akiyama et al., 1999; Mackenzie, Hao, & Munoz, 1995). The immune response in the brain is 

thought to be mediated by these microglial cells (Giulian, 1987). In 1988, it was shown that the 

class II major histocompatibility complex (MHC) antigen HLA-DR could be used to identify 

microglial reactivity in brain tissue, allowing for probing of inflammatory mechanisms in 

postmortem AD (Rogers, Luber-Narod, Styren, & Civin, 1988). It has since been shown both at 

autopsy and in vivo, that inflammatory processes are more active in the brains of AD and MCI 

patients than in healthy controls (Hommet et al., 2014).  The root cause of neuroinflammation in 

AD, however, is not known; evidence shows that the process can be initiated by damaged 

neurons, Aβ deposits, and/or NFTs (Akiyama et al., 2000). 

Perhaps not surprisingly, some of the most compelling evidence for a causal role of 

inflammation in AD came from the originators of the hypothesis and led to its formation; in 

2012, Krstic et al. (Krstic et al., 2012) demonstrated that a single systemic immune system 

disturbance (by injection of a double-strand RNA that mimics a virus, called PolyI:C) during late 
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gestation of a wild-type mouse was sufficient to induce AD-like neuropathological changes and 

cognitive decline (specifically spatial recognition memory, as measured by the Y-maze task). 

Mice that sustained two immune challenges (one during gestation, the other during adulthood 

(between 9-15 months)) showed even more pronounced AD-like changes, including APP 

deposition (in entorhinal regions), PHFtau aggregation, microglial activation, and reactive 

gliosis. In humans, it has been found that infection burden (including cytomegalovirus, herpes 

simplex virus type 1 (HSV-1), and bacteria) increase odds for developing AD (Bu et al., 2014).  

Further support for the inflammatory hypothesis of AD has come from genome-wide association 

studies (GWAS) that have consistently identified variants within genes involved in inflammation 

as risk factors for AD, albeit with modest effects (Karch et al., 2014; Lambert et al., 2013; Naj et 

al., 2011). A recent pathway analysis conducted by the International Genomics of Alzheimer’s 

Disease Consortium (IGAP) on data from their meta-analysis of over 74 000 individuals showed 

the most significant enrichment for genes involved in the immune response (L. Jones et al., 

2015). Additional evidence comes from studies finding that mutations within the gene encoding 

for triggering receptor expressed on myeloid cells 2 (TREM2) are risk factors for AD (Guerreiro 

et al., 2013; Jonsson et al., 2013). TREM2 is a cell membrane receptor involved in signaling 

pathways leading to activation of immune cells, including microglia. Subsequent in vivo and in 

vitro studies of human and mouse tissue have demonstrated that dysfunctional TREM2 leads to 

dysregulation of the immune response, though whether the protein functions to compensate for 

AD-related pathology (Jiang et al., 2014) or exacerbate it (Jay et al., 2015) is not clear.  

As discussed in Section 1.2.5, the immune response to pathogenic vascular changes is a well-

documented phenomenon, but it has also been shown that aberrant activation of the immune 

system can create vascular deficiencies and leakage of the blood-brain barrier (BBB), making 

their temporal relationship unclear (S. L. Lim, Rodriguez-Ortiz, & Kitazawa, 2015). Temporal 

relationships of inflammation with other AD pathologies are also unclear: in transgenic mice, the 

levels of both Aβ40 and Aβ42 expressed were related to increases in pro-inflammatory cytokines 

(including interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), 

interleukin-1 beta (IL-1β), interleukin-1 alpha (IL-1α), and granulocyte macrophage colony-

stimulating factor (GM-CSF)) (N. S. Patel et al., 2005), though changes in immune system 

reactivity also occur with normal aging (Teunissen et al., 2003). 
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Importantly, it is not currently understood if the activation of microglia is a beneficial or 

detrimental process. Evidence shows that active microglia facilitate the clearance of Aβ 

(Mandrekar-Colucci & Landreth, 2010), however, the release of pro-inflammatory molecules 

such as IL-1β, IL-6, and TNFα can have toxic effects (intended to destroy invading pathogens). 

Fueling this complexity is the fact that microglia may exhibit very different characteristics 

depending on their state of activation, which can be “classical”, “alternative” (also called 

“repair/resolution”), or “acquired deactivation” (Colton, 2009); the first falling into the M1-like 

category of microglial phenotypes (pro-inflammatory/destructive) and the second two falling into 

the M2-like (anti-inflammatory/protective) category (an oft-reported, simplified nomenclature 

developed to helpfully decipher opposing microglial phenotypes (Y. Tang & Le, 2015)). Gene 

expression profiling studies in transgenic mouse models show that microglial phenotypes in AD 

are likely in a repair-primed alternative state of activation (Colton et al., 2006). Consistent with 

the protective roles of microglia in AD are early observations of dystrophic and apoptotic 

microglial in AD brain (Lassmann et al., 1995; Streit, 2002). The change of activation from M2- 

to M1-type as the immune response persists in reaction to the unrelenting accumulation of Aβ 

and/or tau pathology may represent a key turning point in AD pathogenesis (Hanisch & 

Kettenmann, 2007). However, despite known destructive properties of pro-inflammatory 

cytokines, it has been shown that anti-inflammatory signaling factors can also have detrimental 

effects on bran immune function and exacerbate AD-like symptoms (Chakrabarty et al., 2012; 

Town et al., 2008).  

In summary, AD is characterized by widespread neuroinflammation involving the activation of 

resident immune cells (microglia) and astrocytosis. This activation may be a protective response 

to invading pathogens or a destructively aberrant process causing neurodegeneration, or both 

simultaneuously. While AD etiopathogenesis certainly involves neuroinflammation, a clear chain 

of causality including the other major AD pathogenic mechanisms has not been delineated. 
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1.3 Alzheimer’s Disease Biomarkers 

1.3.1 Background 

Given the growing appreciation for AD as a lifelong process, with clinical signs and symptoms 

only emerging late in the disease, and the failure of clinical trials for interventions targeting 

symptomatic patients, there is now a critical emphasis on the use of “biomarkers” in AD research 

to detect and define early stage disease. Broadly, a biomarker is any medical sign (i.e. an 

objective measure of a medical state independent of the patient’s own perception) that can be 

measured accurately and reproducibly (Strimbu & Tavel, 2010).  

In the 1984 NINCDS-ARDA Work Group diagnostic criteria (McKhann et al., 1984), a number 

of “laboratory assessments” (essentially biomarkers) were identified that could improve the 

diagnostic accuracy by eliminating other causes of dementia. These included electrophysiology 

(e.g. electroencephalography (EEG); sensitive but not specific), computed tomography (CT), 

regional cerebral blood flow (e.g. xenon clearance; may differentiate between some dementias), 

PET imaging (amyloid imaging had not yet been invented, but glucose and oxygen uptake were 

commonly measured), MRI (identifying demyelination and white matter hyperintensitites), and 

examination of body fluids and non-neural tissues (including cerebrospinal fluid (CSF) and 

blood). When the criteria were revised in 2011 (McKhann et al., 2011), they took into account 

over two decades of biomarker research (Hampel et al., 2008) implicating three specific 

modalities that could be incorporated into a diagnosis of “probable AD dementia with evidence 

of the AD pathophysiological process”: CSF Aβ42, tau, and hyperphosphorylated tau (P-tau) 

levels, PET imaging amyloid uptake in temporo-parietal cortex, and structural MRI analysis of 

disproportionate atrophy in temporo-parietal regions. Clifford Jack and David Holtzman group 

these biomarkers into two major categories: amyloidogenic and neurodegenerative (Clifford R. 

Jack & Holtzman, 2013). 

Based on changes in such biomarkers, Sperling et al. (Sperling et al., 2011) proposed a three-

stage system for tracking preclinical AD leading to MCI; the stages are 1) asymptomatic cerebral 

amyloidosis, 2) amyloid positivity + evidence of synaptic dysfunction and/or early 

neurodegeneration, and 3) amyloid positivity + evidence of neurodegeneration + subtle cognitive 

decline. While these stages, which were based primarily on biomarker trajectories proposed by 

Jack et al. (Clifford R. Jack et al., 2010), do not constitute clinical diagnoses, they were intended 
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to aid in the design of future studies aimed at understanding the AD disease process and of 

clinical trials targeting at-risk individuals who have not yet entered the later stages of disease. 

In this thesis, I have focused on the use of molecular and neuroimaging endophenotypes  (or 

“intermediate” phenotypes) -- heritable characteristics that co-segregate with the illness in 

question, are state independent (i.e. remain detectable even in the absence of outward 

symptoms), and are found in family members without the disease (Gottesman & Gould, 2003) -- 

that have been validated as predictive of AD risk by previous studies to unearth the temporo-

spatial patterns of disease risk conferred by common genetic variants. Biomarkers used in the 

work presented here include plasma and serum proteomics, in vivo molecular neuroimaging 

(amyloid PET), and in vivo structural and diffusion MRI. Postmortem measurements of AD-

related pathologies (amyloid, tau, and microglial activation), as discussed in Section 1.2, have 

been included in Chapters 4, 5 and 6, in attempts to confirm and extend the mechanistic 

interpretations of in vivo biomarkers used in those studies, but will not be discussed further here. 

However, cerebrospinal fluid proteomics, while not included in studies presented herein, will be 

discussed because of its current use in AD diagnostics.   

 

1.3.2 Cerebrospinal Fluid Biomarkers 

The analysis of CSF from living subjects offers a window into the molecular contents of the 

central nervous system (CNS), as it is in direct contact with the extracellular space of the brain. 

Levels of core CSF biomarkers (Aβ42, total tau (T-tau), and P-tau) have been consistently shown 

to differentiate between AD, MCI, and CN subjects, whereby the ratio of Aβ42/T-tau and Aβ42/P-

tau decrease with worsening disease (reviewed by Blennow et al. (Blennow, Hampel, Weiner, & 

Zetterberg, 2010) and Sonnen et al. (Sonnen, Montine, Quinn, Breitner, & Montine, 2010)). The 

sensitivity for diagnosis of AD based on CSF Aβ42 and T-tau is approximately 78-84% when 

considered independently, but up to 86% when both are combined (with specificity improving 

from 84-90% to 97%) (Maddalena et al., 2003). Based on the effectiveness of this combination, 

the INNOTEST® (Fujirebio Europe N.V., Ghent, Belgium) Amyloid Tau Index (IATI; 

calculated as IATI = Aβ42/(240+1.18*T-tau)) is a commercially available enzyme-linked 

immunosorbent assay (ELISA), which has demonstrated potential use in a clinical setting 

(Vanderstichele et al., 2006).  
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Since AD is largely a diagnosis of exclusion, a priority in the field has been identifying CSF 

biomarkers that are capable of differentiating between AD and other types of clinically similar 

dementias (including FTD, VaD, and dementia with Lewy bodies (DLB)). Some groups have 

shown that the ratio of Aβ42 to tau hyperphosyphorylated at threonine 181 (P-tau181P) 

outperforms Aβ42/T-tau ratio and either Aβ42 or T-tau alone in classifying postmortem confirmed 

AD from FTD and DLB subjects (Struyfs et al., 2015). Different hyperphosphorylated species of 

tau, including P-tau231P and P-tau199P, may provide heightened specificity and sensitivity for the 

classification of AD vs. FTD, DLB, and VaD (Hampel et al., 2004). However, others have 

shown that Aβ42 performs better than T-tau and P-tau at differentiating AD from other dementias 

(Ewers et al., 2015).  

Much work is currently being directed at identifying CSF biomarker panels that add confidence 

to the accuracy of diagnosis classification and prediction models. Candidate biomarkers that 

have shown some promise for improvement of diagnostic sensitivity and specificity are enzymes 

(including β-site APP-cleaving enzyme 1 (BACE1)), APP isoforms (e.g. sAPPα and sAPPβ), Aβ 

peptide isoforms (e.g. Aβ14, Aβ15 and Aβ16), Aβ oligomers, endogenous Aβ antibodies, neuronal 

and synaptic markers of degeneration (e.g. visinin-like protein 1 (VLP-1), neurofilaments, and 

growth-associated protein 43 (GAP-43)), and markers of oxidative damage (e.g. F2-isoprostanes) 

(Blennow et al., 2010). Most recently, markers of brain iron load (ferritin) and glutamatergic 

function (D-serine) have shown promise in predicting conversion from MCI to AD and 

improving existing diagnostic accuracy of AD (Ayton, Faux, Bush, & Alzheimer’s Disease 

Neuroimaging Initiative, 2015; Madeira et al., 2015). In fact, the combination of IATI with D-

serine showed a sensitivity and specificity of 96.3% and 100%, respectively (albeit in a small 

sample of 17 neuropathologically-confirmed AD and 12 non-AD subjects) (Madeira et al., 

2015). 

In summary, CSF Aβ42, T-tau, and P-tau show robust relationships with AD onset and decline. 

These core biomarkers also have the ability to differentiate between AD and other forms of 

dementia, though there is active debate over which markers are most effective. 
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1.3.3 Blood-Based Biomarkers 

As blood draw is a minimally-invasive and inexpensive procedure, proteomic analysis of 

circulating plasma (the liquid medium of blood in which blood cells are suspended) or serum 

(plasma without clotting factors) is an attractive source of biomarkers in AD (Issaq, Xiao, & 

Veenstra, 2007). Measuring concentrations of proteins in blood to gain insight into brain-specific 

phenomena has some inherent difficulties, including the contributions of non-brain organs and 

tissues to the molecular make-up of blood and BBB. While the BBB functions to restrict the 

movement of substances to and from the brain, the normal absorbance of CSF into blood results 

in the exchange of some small peptides (S. Patel, Shah, Coleman, & Sabbagh, 2011), and 

“leakage” of a compromised BBB, as observed in AD, may further lead to the transfer of brain 

proteins into peripheral circulation (Zipser et al., 2007). 

As with CSF, evidence for the involvement of core biomarkers in risk for and progression of AD 

is abundant, though not as consistent. A meta-analysis by Song et al. (F. Song et al., 2011) on 

plasma Aβ literature from 1989-2010 found that plasma Aβ42 had predictive value in healthy 

individuals for the development of AD (higher Aβ42 = higher risk). However, in cross-sectional 

studies, Aβ42 showed only a trend toward being lower in AD patients vs. healthy controls 

(p=0.08), and Aβ40 showed no difference. Another meta-analysis (Koyama et al., 2012) of 13 

prospective plasma biomarker studies published from 1995-2011 found that neither Aβ42 nor 

Aβ40 was associated independently with the development of AD, but that the ratio of Aβ42: Aβ40 

was significantly so. In contrast to peripheral Aβ, which appears to indicate early risk for AD, 

peripheral tau protein levels, as measured by assays hypersensitive to all tau isoforms, are 

elevated in AD patients compared to both MCI subjects and normal controls, suggesting it may 

be a late-stage biomarker of disease progression (Zetterberg et al., 2013). However, due to 

substantial overlap in variance between groups and high heterogeneity between studies, both Aβ 

and tau blood-based biomarkers lack the discriminatory capacity required for diagnostic use. 

Importantly, estimates of heritability for plasma Aβ42 have been as high as 73% (Ertekin-Taner 

et al., 2001), satisfying aforementioned criteria for endophentoype status. 

Inflammatory blood-based biomarkers have also been tested extensively for association with AD, 

MCI, and cognitive decline, but with more consistent results. A meta-analysis of 40 studies by 

Swardfager et al. (Swardfager et al., 2010) concluded that peripheral pro-inflammatory 
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biomarkers (including IL-6, TNFα, IL-1β, IL-12, and IL-18) were consistently increased in AD, 

whereas anti-inflammatory cytokines IL-4 and IL-10 showed no differences. While they did find 

evidence for increases in anti-inflammatory transforming growth factor beta (TGF-β) in AD vs. 

controls, it has been shown that TGF- β may exert pro-inflammatory effects in the presence of 

IL-6 (Veldhoen, Hocking, Atkins, Locksley, & Stockinger, 2006). A smaller meta-analysis of 

seven studies by Koyama et al. (Koyama et al., 2013) further found evidence for elevation of C-

reactive protein (CRP) and IL-6 in all-cause dementia, however differences were less 

pronounced in AD specifically, suggesting that results for these analytes may be reflective of 

heterogeneity in diagnoses rather than an AD-specific process. In general, inflammatory 

biomarkers may be more reflective of CNS changes than other blood-based biomarkers, since 

there is continuous cross-talk between the peripheral and central immune systems (Perry, 

Cunningham, & Holmes, 2007), cytokines can cross the BBB via active transport or passive 

diffusion (Banks, Kastin, & Broadwell, 1995; Rivest et al., 2000), and activated peripheral 

immune cells can migrate across the BBB (El Khoury & Luster, 2008). 

In addition to targeting a-priori analytes, groups have also attempted to develop panels of blood-

based biomarkers that best differentiate between AD, MCI, and control groups cross-sectionally. 

Though studies repeatedly claim high diagnostic accuracy for certain combinations of analytes, 

the number and identity of the important analtyes is quite variable. For example, the Texas 

Alzheimer’s Research and Care Consortium (TARCC) used a serum-based panel of 30 analytes 

to achieve sensitivity and specificity of 88% and 82%, respectively, to distinguish clinical AD 

from cognitively normal controls (O’Bryant et al., 2011). However, the Australia Imaging 

Biomarkers and Lifestyle Study of Ageing (AIBL) study achieved 85% and 93% with a different 

panel of 17 analytes in plasma (Doecke et al., 2012). Further demonstrative of the variability in 

blood-based biomarker discriminatory analyses, Hu et al. (W. T. Hu et al., 2012) analyzed two 

independent cohorts from the University of Pennsylvania (Philadelphia, PA, USA) and 

Washington University (St. Louis, MO, USA), finding that while 23 analytes were predictive of 

diagnosis in both cohorts, six showed opposite directions of effect. In each of the aforementioned 

studies, the publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI; described in 

Section 1.3.8) plasma proteomic dataset was also analyzed, each time with different results. 

To tackle the major issue of reproducibility (Galasko & Golde, 2013), the first set of 

international guidelines were released for use in research of blood-based biomarkers (O’Bryant 
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et al., 2015), emphasizing the importance of both controllable (e.g. time of sample collection, 

subject fasting status, needle size, collection tube types and temperature of storage freezers), and 

uncontrollable (e.g. non-AD comorbidities, subject activity level and diet, and medications) 

sources of variation and potential confounding that should be taken into account to harmonize 

future research and improve reproducibility.  

In summary, while the interruption of the BBB may result in “leakage” and peripheral detection 

of CNS molecular processes, the complex nature of molecular communication between body and 

brain is not well understood. Literature surrounding changes in circulating levels of Aβ and tau 

proteins in AD is heterogeneous, though some evidence suggests that Aβ may be an early 

indicator of risk and tau may be a late marker of neurodegeneration. Inflammatory blood-based 

biomarkers may offer meaningful insight into neuroinflammatory processes due to molecular 

communication between the CNS and periphery.  

  

1.3.4 Molecular Imaging (Positron Emissions Tomography) 

The ability to measure concentrations of specific molecules directly inside the living brain, rather 

than relying on more distal measurements of fluid biomarkers, has been made possible by PET. 

This technology was enabled by seminal research by Irène and Frédéric Joliot-Curie 

demonstrating that radioactive atoms could be created artificially in a laboratory setting (Joliot & 

Curie, 1934). Their discovery that positrons (the anti-particle to the electron, with a charge of 

+1e, first mathematically predicted by Paul Dirac in 1931 (Dirac, 1931) and experimentally 

confirmed in 1933 (Blackett & Occhialini, 1933)) continued to be emitted from target substances 

(such as magnesium, boron, or aluminum) after bombardment by alpha particles earned them the 

Nobel Prize for chemistry in 1935. Simultaneously, a group led by Ernest Lawrence had 

conceived the cyclotron, a magnetic device capable of generating high-energy particles (protons 

and deuterons) for the bombardment of other elements. Originally designed to explore the 

properties of the atomic nucleus, it became a medical device (called the “medical cyclotron”) for 

the production of artificial radioisotopes, including 11C, 13N, 15O, and 18F (Wagner Jr, 1998). 

This ushered in the era of nuclear medicine, whereby photon-emitting isotopes were used as 

radiotracers and chemically bound to molecules of known physiological function. Currently, 

radiotracers that are commonly used in AD research are those that mimic glucose and index 
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metabolic activity ([18F]-2-fluoro-2-deoxy-d-glucose (FDG)), those that bind to Aβ ([11C]-

Pittsburg B compound (PIB), [18F]-AV-45 (Florbetapir)), and those that bind to translocator 

protein and index microglial activation ([11C]-PK11195, [18F]-PBR111, [11C]- and [18F]-

PBR28, and [18F]-FEPPA). This is not a complete list, as hundreds of compounds have been 

developed for the probing of alternative targets in AD, including metal ion chelation in Aβ 

plaques, CAA, metabotropic glutamate receptors, muscarinic ACh receptors, and several brain 

enzymes (e.g. GSK-3β, AChE, and monoamine oxidase B (MAO-B) (Holland et al., 2014). 

One of the most consistent findings in all of AD biomarker research is that glucose metabolism, 

as measured by FDG-PET, is reduced in temporo-parietal areas, with impairment greatest in the 

angular gyrus, and in frontal cortex, though only later in the disease (Herholz, 2003). These 

regions are myelinated latest in development and are most susceptible to cortical amyloid 

deposition in AD (Bartzokis, Lu, & Mintz, 2007). FDG-PET discriminatory analyses can identify 

AD vs. control subjects with 93% accuracy (Herholz et al., 2002). The use of FDG PET is also 

useful for confirmation of suspected AD subtypes based on hemispheric asymmetries of 

impaired regions (e.g. left- or right-variant AD), and differentiation between AD and other 

dementias, as certain regions (basal ganglia, primary motor and visual cortices, and cerebellum) 

are uniquely spared in AD (Herholz, Carter, & Jones, 2007). FDG-PET may have value as a 

marker of disease progression and treatment efficacy, as regional signal differences are 

indicative of conversion from MCI to AD (Cerami et al., 2015), and significant reductions in 

metabolism over time have been observed in patients, correlating with worsening cognitive 

performance (G. E. Alexander, Chen, Pietrini, Rapoport, & Reiman, 2002; Jagust, Friedland, 

Budinger, Koss, & Ober, 1988; R. Mielke, Herholz, Grond, Kessler, & Heiss, 1994). 

Since the first human study of the Aβ -binding PIB-PET radiotracer by Klunk et al. in 2004 

(Klunk et al., 2004), studies have repeatedly found elevated levels of Aβ throughout the brain 

(though not in primary sensory and motor cortices) in AD subjects vs. controls (Edison et al., 

2007; Clifford R. Jack & Holtzman, 2013; Kemppainen et al., 2006; Nordberg, 2004). In contrast 

to FDG-PET, PIB-PET may not have the longitudinal sensitivity to detect disease progression or 

treatment efficacy; Engler et al. (Engler et al., 2006) have shown that PIB retention is relatively 

stable in AD subjects after two years, suggesting that Aβ deposition as measured by PIB may 

reach a plateau early in the disease. Consistent with this, recent trials of anti-amyloid compounds 

(discussed in Section 1.1.5) have selected symptom-free elderly participants based on positivity 
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of Aβ-PET scans (e.g. A4 trials). However, approximately 33% of cognitively normal 

individuals show Aβ accumulation (Clifford R. Jack et al., 2014; Rowe et al., 2010; Villemagne 

et al., 2013), and Satlin et al. (Satlin et al., 2014) have recently found that only 60% of subjects 

with MCI thought to be due to AD show Aβ positivity in trial recruitment. As summarized by 

Sperling et al. (Sperling, Mormino, & Johnson, 2014), even if some evidence suggest that Aβ 

positivity may be indicative of subsequent cognitive decline (Y. Y. Lim et al., 2014; Mormino et 

al., 2014; Vos et al., 2013), the binding of Aβ radiotracers in vivo should be considered as a 

necessary but insufficient driver of AD dementia, and interacting factors (such as genetics and 

co-morbid pathology) should be the subject of future study. The Aβ-binging radiotracer 

[18F]Florbetapir ([18F]-AV-45) has recently been adopted by large multi-site consortia (Choi et 

al., 2012; Clark CM, Schneider JA, Bedell BJ, & et al, 2011; Jagust et al., 2010) due to its 

favourable pharmacokinetics and binding characteristics (K.-J. Lin et al., 2010), though Landau 

et al. recently found high correlation between different Aβ PET radiotracers across regions 

(Landau et al., 2014). 

PET imaging of inflammation using radiotracers that bind to translocator protein (TSPO) has 

found that AD subjects generally show increases in signal compared to controls, and that the 

effect is most prominent in entorhinal, temporo-parietal and posterior cingulate cortices (Cagnin 

et al., 2001). This is thought to be due to the strong up-regulation of TSPO by active microglia 

under inflammatory conditions (M.-K. Chen & Guilarte, 2008).  Recent evidence suggests that 

the second-generation TSPO-binding radiotracer [18F]-FEPPA may have high specificity to 

neurodegenerative disorders, as no age-related change in binding was seen in healthy elderly 

(Suridjan et al., 2014). As reviewed by Zimmer et al. (Zimmer et al., 2014), the relatively newer 

field of measuring neuroinflammation in vivo using PET has yet to demonstrate consistency 

between studies of first and second generation radioligands, though converging evidence from 

second generation studies suggests that increased TSPO expression by active microglia likely 

occurs after AD onset and may continue to change as the disease progresses (Yasuno et al., 

2012). Importantly, the rs6971 polymorphism in the TSPO gene has a strong influence on 

binding affinity of second generation TSPO radiotracers (Owen et al., 2012), and thus must be 

considered in PET studies of such ligands (this gene variant is the subject of investigation in 

Chapter 5). 
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The latest advance in PET imaging of AD is the development and testing of radiotracers specific 

for tau protein (recently reviewed by Watanabe et al. (Watanabe, Ono, & Saji, 2015)). Several 

difficulties have hindered progress on this front including the intracellular localization of NFTs, 

the co-localization of PHFtau with Aβ plaques, and the lower concentration of tau compared to 

Aβ in the AD brain (Villemagne et al., 2012). Several promising compounds ([18F]-T807, [18F]-

T808, [18F]THK5105, and [18F]-THK523) have advanced from animal to human studies, with 

excellent in vivo properties and high selectivity for PHFtau over Aβ plaques (Chien et al., 2013; 

Fodero-Tavoletti et al., 2011). Clinical studies will be required to demonstrate the value of tau 

radiotracers in AD research. 

In summary, PET imaging allows for the regional and quantitative measurement of glucose 

metabolism, amyloid pathology, and neuroinflammation in living human brain. New 

developments with tau radiotracers may soon offer even greater temporal resolution of the AD 

process in vivo. Unfortunately, the use of PET in routine clinical settings is currently cost 

prohibitive. 

 

1.3.5 MRI Volumetry and Cortical Thickness 

Since AD is a neurodegenerative disorder, it follows that changes in the volume of brain 

structures vulnerable in the disease may be measurable over time. Magnetic resonance imaging 

(MRI) is capable of non-invasively mapping the human brain in living subjects, making such 

measurements possible. While a full discussion of MR physics is beyond the scope of this 

review, it is important to understand the basics in order to appreciate its complexities and 

challenges. In MRI, the “spin” of protons (the nuclei of hydrogen atoms which are found 

abundantly in biological tissue – water, proteins, fats etc.) align to a strong primary magnetic 

field (termed B0) running along and through the bore of the scanner. When hydrogen atoms 

within the scanner bore (e.g. those within a subject’s brain) are perturbed by a radiofrequency 

pulse, their spin direction is offset as they absorb the energy. As they “relax” to their original 

alignment with B0, the protons release their absorbed energy at a rate that is dependent on the T1 

and T2 relaxation properties of the tissue in which they reside (these properties are dependent on 

the biochemical composition of the tissue). The T1 parameter influences the time it takes for the 

pole of the perturbed proton to return to alignment with B0, whereas T2 affects the component of 
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“relaxation” perpendicular to the B0 field (which is caused by the process of precession, where 

offset spins returning to equilibrium results in a conical trajectory, opposite to a spinning top 

losing its momentum). The released energy generates voltage in radio antennae coils (a head coil 

for brain scans) surrounding the subject, which constitute the MR signal that is effectively 

translated using the Fourier transform to reconstruct images. Depending on the time at which an 

image is sampled, and other properties of the acquisition sequence, the combination of T1 and 

T2* signal (T2* indicating total regional T2 signal including influence by phase asynchrony of 

precessing protons that affect the T2 signal) will be different and result in different contrast 

between tissues. For full detail on MR physics and MRI, see McRobbie et al. (McRobbie, 

Moore, Graves, & Prince, 2006) 

MRI volumetry is a field concerned with identifying boundaries of distinct brain lobes, regions, 

and sub-regions in MR images (including pathologies such as white matter hyperintensities, 

discussed in Section 1.3.6) and extracting estimates of their volumes for association with other 

variables of interest such as diagnosis, age, or genetic mutations. Typically this is achieved by 

creating brain atlases (essentially composite 3-D MRI images that are manually labelled with 

known regions of interest (ROIs)) and aligning new brain images (i.e. those of study subjects) to 

them. Based on the deformation (stretches, shears and other manipulations that are performed by 

a process called image registration) required to match the new image to the atlas, it is possible to 

identify which regions on the new unlabeled image are occupied by regions that have been 

labelled on the atlas, allowing for ROI volume estimation in the original (“native”) space of the 

new image. This technique can be applied to different image contrasts to identify the volumes of 

brain structures, tissue types, lesions, or fluids. Using algorithms that manipulate 3-D surface 

meshes to fit into the boundaries of gray and white matter in the brain, it is possible to estimate 

the distance between these surfaces at any given point across the cortex, yielding measures of 

cortical thickness that are also useful for detecting neurodegeneration. 

As neuropathology develops in AD, specific cortical and subcortical regions show signs of 

atrophy; indeed reductions of both volume and thickness of entorhinal cortex, hippocampus, 

posterior cingulate cortex, and supramarginal gyrus as measured by structural MRI are 

consistently reduced in AD and MCI vs. controls (Desikan et al., 2009). The pattern of atrophy 

matches the topology of neuropathology in AD (Dickerson et al., 2009; Dickerson & Wolk, 

2012) and is paralleled by loss of neurons (Bobinski et al., 2000; Zarow et al., 2005) and 
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increases in NFT deposition (J. L. Whitwell et al., 2008). Reductions in the size of the 

hippocampus, a hub of memory and learning in the brain (Bliss & Collingridge, 1993), is 

certainly the most common finding in AD (McConathy & Sheline, 2015), with volume loss 

occurring presymptomatically and progressing over the course of illness (Fox et al., 1996; Schuff 

et al., 2009). Discriminant analyses using average cortical thickness over the parahippocampal 

gyrus was able to identify AD patients vs. controls with 94% accuracy, whereas analyses of a 

much more focal region (a single vertex in the entorhinal cortex) yielded accuracy of 100%  

(Lerch et al., 2008). As reviewed by Frisoni et al. (Frisoni, Fox, Jack, Scheltens, & Thompson, 

2010), atrophy measured by structural MRI correlates with cognition both cross-sectionally and 

longitudinally, with changes in focal (hippocampal pathway) and more global brain (total brain 

and ventricles) volumes correlating closely with cognitive performance over the progression of 

AD. However, it has also been shown that atrophy does not correlate with postmortem Aβ load 

(Josephs et al., 2008), suggesting that atrophy is a later consequence of AD indicative of tau-

mediated neurodegeneration, and that Aβ measurement (either by PET or in CSF) is a more 

sensitive marker of progression through pre-AD phases. As such, the neurodegenerative category 

of AD biomarker defined by Jack and Holtzman (Clifford R. Jack & Holtzman, 2013) 

encompasses the aforementioned late-occurring CSF T-tau and P-tau, as well as brain atrophy on 

structural MRI.   

Currently, the most widely-accepted temporal model of biomarker change over time (Clifford R. 

Jack, Knopman, et al., 2013; Clifford R. Jack & Holtzman, 2013) states that Aβ deposition 

precedes tauopathy, which is followed by neurodegeneration and atrophy (measured by MRI), 

which then causes cognitive decline. The gap between observable neurodegeneration/brain 

atrophy and the onset of cognitive decline has been termed “cognitive reserve” (Stern, 2012) (or 

the ability to maintain normal cognition in the presence of brain pathology or injury), and will be 

discussed more in Section 7.4.1. While substantial evidence supports this “amyloid-first” model 

(Clifford R. Jack & Holtzman, 2013), a second model (“neurodegeneration first”) has also been 

proposed by the same authors (Clifford R. Jack, Wiste, et al., 2013) that captures the literature 

showing that tauopathy and neurodegeneration may precede amyloid deposition (H. Braak & 

Braak, 1997) (discussed in Section 1.2.4). Clearly, there is a lack of understanding about the true 

timing of events leading to and following the onset of AD, and unfortunately structural MRI 

alone cannot answer these questions. 
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Despite consistent observations of brain atrophy in AD, brain structure volumes and cortical 

thickness is a relatively non-specific marker of neurodegeneration and is seen in the context of 

normal aging and many other conditions (Dickerson & Wolk, 2012; Fjell et al., 2009; Clifford R. 

Jack, Knopman, et al., 2013; Murphy et al., 2010). In fact, Fjell et al. (Fjell et al., 2013) found 

that significant global atrophy (as well as hippocampal atrophy correlating with changes in 

memory performance) occurred over the course of one year in a group of 132 cognitively normal 

subjects at very low risk for AD (no signs of MCI within three years).  

In summary, volumetric changes in brain structures important for memory and first affected by 

AD, such as the hippocampus and entorhinal cortex, are reliable indicators of AD risk and 

progression and thought to represent neurodegeneration. However, the lack of knowledge 

surrounding other physiological contributors to volume, thickness, and shape of brain structures 

make mechanistic interpretation of these changes difficult.  

 

1.3.6 White Matter Macrostructure (Hyperintensities, Infarcts) 

Using a T2-weighted MRI acquisition sequence that maximizes white matter tissue signal 

contrast and nullifies the contribution of CSF, it is possible to observe details in the white matter 

of the brain that would otherwise go undetected. Hajnal et al. (Hajnal et al., 1992) first described 

an MRI acquisition protocol, called fluid attenuated inversion recovery (FLAIR), with 

characteristics that produced a low signal in heavily myelinated white matter areas and high 

signal in unmyelinated regions, and was useful for identifying brain lesions in a range of CNS 

diseases (Coene et al., 1992; Rydberg et al., 1994), including acute subarachnoid hemorrhage 

(Noguchi et al., 1995), a type of stroke. Since the beginning of their clinical use, regions of 

hyper-intense signal (or white matter hyperintensitites (WMH)) in these images have been 

commonly observed in scans of cognitively normal elderly subjects (prevalence estimates as high 

as 95% in those aged 65 and over (Longstreth et al., 1996)), but more commonly in MCI and AD 

subjects than age-matched controls (Bombois et al., 2007; Jellinger & Attems, 2005; Luchsinger 

et al., 2009). WMH are rare in young healthy individuals (prevalence of ~5%), however, the risk 

for having WMH increases 10-fold after the age of 55 (Hopkins et al., 2006).  
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There are two main commonly observed types of WMH: 1) periventricular, and 2) 

deep/subcortical (Mäntylä et al., 1997). Periventricular WMH are found outlining the CSF-filled 

lateral ventricles, while deep/subcortical WMH are more punctate, isolated lesions. As reviewed 

by Schmidt et al. (R. Schmidt et al., 2011) and Kim et al. (Kim, MacFall, & Payne, 2008), the 

presence of different types of WMH in different regions correlate with different autopsy-

confirmed pathologies and epidemiological risk factors. Smooth periventricular WMH typically 

have a non-vascular origin; there is little evidence of arteriosclerosis or periarteriolar tissue 

damage in these regions. It has been suggested that disruption of the ependymal lining of the 

lateral ventricle, accompanied by gliosis and loss of myelin, may be responsible for these WMH 

(P. Scheltens et al., 1995). Deep/subcortical WMH represent more ischemic sources of 

pathology, with the most common being the widening of periarteriolar space, loss of fibres, local 

atrophy, and arteriosclerosis, and may represent early stage infarcts (early confluent changes) 

(Kim et al., 2008; R. Schmidt et al., 2011). Molecular examinations of deep WMH show 

associations with hypoxia-inducible factors (HIFs), suggesting that ischemia resulting from 

chronic hypoperfusion may be a key contributor to these lesions (Fernando et al., 2006). As such, 

WMH are often used as indicators of ischemic vascular disease (a type of small vessel disease 

(SVD)) and show correlation with executive function, attention, and mental flexibility both 

cross-sectionally and longitudinally (Au et al., 2006; Brickman et al., 2008; Jokinen et al., 2009; 

Ylikoski et al., 1993). However, only individuals with early confluent or confluent lesions tend 

to show increases in WMH volume over time, whereas individuals with distinctly punctate 

lesions do not (R. Schmidt et al., 2003), supporting the notion that confluent deep WMH are 

those representing underlying vascular irregularities and are thus prone to spreading (R. Schmidt, 

Petrovic, Ropele, Enzinger, & Fazekas, 2007). Experts have proposed that WMH be sub-

classified based on their proximity to the ventricular watershed region (3mm-13mm from 

ventricular surface) to differentiate between those WMH that are hemodynamically defined 

(periventricular) and those that are ischemic (deep) (Kim et al., 2008). 

A currently unresolved issue in the field is how best to model the effect of WMH; since the 

presence of WMH is so high in healthy subjects, and the extent of WMH varies so widely 

between individuals, dose-dependent effects have been demonstrated whereby a certain threshold 

of WMH volume must be achieved in order for cognitive changes to manifest (Boone et al., 

1992). Further, the location of WMH, rather than just total volume, may be an important factor, 
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as Brickman et al. have recently shown that parietal WMH specifically are associated with AD 

(Brickman et al., 2012). Another issue with studying the contribution of WMH to cognitive 

decline in AD is disentangling its effects from that of brain atrophy; some show that WMH 

effects on executive function and memory are lost when co-varying from brain volume (DeCarli 

et al., 1995; DeCarli, Murphy, Teichberg, Campbell, & Sobering, 1996), whereas others show 

independent effects of both (Swartz, Stuss, Gao, & Black, 2008). 

As noted above, punctate deep white matter lesions may represent infarcted tissue. Cerebral 

infarcts are focal regions of necrotic brain tissue resulting from ischemia (either via the occlusion 

of blood vessels, embolism, or hemorrhage/stroke) and are the second most common type of 

pathology observed at autopsy in elderly (Knopman et al., 2003). In 3 397 individuals without a 

prior history of stroke from the Cardiovascular Health Study (CHS), 28% were found to have 

infarcts detectable with MRI, and the presence of infarcts was correlated with cognitive and 

other neurological deficits (T. R. Price et al., 1997). While these “silent infarcts” (i.e. those that 

do not manifest as clinical emergencies (i.e. stroke)) are quite prevalent in otherwise healthy 

individuals, their accumulation can cause full-on dementia; in 1974, Hachinski et al. (Hachinski, 

Lassen, & Marshall, 1974) proposed “multi-infarct dementia” (a type of VaD), which as the 

name suggests, describes a dementia resulting primarily from the presence of multiple cerebral 

infarcts.  

Infarcts can be classified based on their size (micro or macro), by phase (acute, subacute, or 

chronic), and by their localization/cause (atherothrombotic, cardioembolic, lacunar, or other) (C. 

M. Fisher, 1998; NINDS, 1990; E. E. Smith, Schneider, Wardlaw, & Greenberg, 2012). Macro 

infarcts generally are associated with AD diagnosis and decline in memory (Vermeer et al., 

2003), and are associated with the development of MCI from a healthy state and the further 

progression to moderately impaired states (J. A. Schneider et al., 2009; Yu, Boyle, et al., 2015). 

As with WMH, the location of infarct may determine the cognitive domain it affects. For 

example, thalamic infarcts have been shown to preferentially influence memory task 

performance (Bogousslavsky, Regli, & Uske, 1988; Gold et al., 2005), whereas non-thalamic 

infarcts affected psychomotor performance (Vermeer et al., 2003). It has also been shown that 

infarcts are more strongly related to na-MCI, whereas WMH are more strongly related to a-MCI 

(Luchsinger et al., 2009), and, at the population level, ancestry may influence the prevalence of 
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infarcts in AD, whereby those of African-American ancestry are more likely than Caucasians to 

have mixed pathology (including concomitant infarcts) (Barnes et al., 2015). 

The undetected presence of microinfarcts (0.2-2.9mm in size (Arvanitakis, Leurgans, Barnes, 

Bennett, & Schneider, 2011; Okamoto et al., 2009)) may provide an explanation for why only 

one or a few macroscopic infarcts can seemingly cause significant cognitive effects; 

microinfarcts are also thought to arise from small vessel disease (Yip et al., 2005) and have been 

shown to contribute to risk for cognitive dysfunction independently of other pathologies, 

including macroinfarcts (E. E. Smith et al., 2012). A common assertion is that the presence of 

infarcts (indiacative of cerebrovascular pathology) is an additive adjunct to the neuropathological 

burden of AD (Aβ and PHFtau), resulting in greater risk for clinical AD and subsequent 

cognitive decline when present in combination, possibly by eroding cognitive reserve (Bangen et 

al., 2015; Raz, Knoefel, & Bhaskar, 2015; Vermeer, Longstreth Jr, & Koudstaal, 2007). 

In summary, white matter hyperintensitites and cerebral infarcts are common and related to AD 

diagnosis but also show additive effects with AD pathology on cognition. Deep WMH may be a 

reaction to vascular changes in SVD and useful as a proxy for vascular and inflammatory 

dysfunction. 

  

1.3.7 White Matter Microstructure (Diffusion Tensor Imaging) 

In contrast to coarse macrostuructural measurements of white matter outlined above, the 

invention of diffusion tensor imaging (DTI) has allowed researchers to examine changes in white 

matter that are invisible to the naked eye and may precede gross anatomical changes. DTI is an 

implementation of MRI, using a specific acquisition sequence and magnetic gradients to sample 

the diffusion characteristics of water in the brain in multiple directions. While diffusion MRI had 

been introduced in 1986 by Le Bihan et al. (Le Bihan et al., 1986), the application of the 

mathematical tensor (representing a geometric object, in this case an ellipsoid) to diffusion MRI 

data to extract the directionality of water diffusion in 3-D was first proposed by Peter Brasser in 

1994 (Basser, Mattiello, & LeBihan, 1994). Before this, diffusion could be quantified but only in 

a single dimension (i.e. orientation of the sample had to be known). Using a specific acquisition 

sequence called spin-echo, that allows for the measurement of molecular diffusion of liquids 
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(developed in 1950 by Erwin Hahn (Hahn, 1950)), and the repetition of this sequence using 

multiple magnetic field gradients sensitized to diffusion in different directions, it is possible to 

calculate a diffusion tensor in each voxel of the brain (Basser, 1995). The diffusion tensor is a 

3x3 co-variance matrix describing diffusion displacements in 3-D, with eigenvectors (ê1, ê2, ê3) 

and eigenvalues (λ1, λ2, λ3) describing the directions and apparent diffusivities of water in each 

dimension (A. L. Alexander, Lee, Lazar, & Field, 2007). If the eigenvalues are approximately 

equal (λ1 ~ λ2 ~ λ3), then diffusion is said to be isotropic (i.e. equal in all directions, as water in a 

glass, or in CSF), whereas if eigenvalues are quite different in magnitude (e.g. λ1 > λ2 > λ3) then 

diffusion is anisotropic (i.e. directionally unequal, as water flowing through a pipe, or within 

axons). The principle axis of diffusion corresponds to the eigenvector with the largest 

corresponding eigenvalue. 

In clinical research, information from the diffusion tensor is commonly processed in one of two 

ways: separately within each voxel to analyze focal white matter microstructural changes, or for 

the reconstruction of entire white matter fibres using tractography (helpful review by (Snook, 

Plewes, & Beaulieu, 2007), though somewhat outdated). Voxel-based approaches (such as tract-

based spatial statistics (TBSS)) are useful for detecting focal changes in WM microstructure that 

may only affect one part of an entire WM tract  and lend themselves best to hypothesis-free 

testing of the whole brain, since there is no pre-definition of what constitutes of tract or ROI (S. 

M. Smith et al., 2006). TBSS can be adapted to produce average diffusion metrics across ROIs 

using a WM atlas; such a protocol is being used by the Enhancing Neuro Imaging Genetics 

through Meta-Analysis (ENIGMA) consortium (Thompson et al., 2014) to standardize and 

simplify image processing across many datasets and facilitate inter-site comparability. 

Tractography may give a more anatomically accurate assessment of WM integrity since it uses 

the directional information contained in the tensor to estimate the trajectory of white matter 

fibres, which then can be used to calculate metrics of diffusion for entire tracts (Voineskos et al., 

2009).  

The most commonly used diffusion metric in clinical research of AD is fractional anisotropy 

(FA) (Koay, Chang, Carew, Pierpaoli, & Basser, 2006), which is described by the following 

equation: 
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Where MD (mean diffusivity, also called apparent diffusion coefficient (ADC)) is equal to trace 

(the sum of the tensor eigenvalues λ1, λ2, and λ3) divided by three. FA is a measure of the 

directional restriction of water in the voxel, and is commonly used as an indicator of white 

matter “integrity”, sensitive to changes in myelination, extracellular water (as in inflammation or 

tissue damage), axonal density and diameter (M. Takahashi et al., 2002), and especially fibre 

orientation within a voxel (Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro, 1996). In contrast, 

MD is a more general measure of translational diffusion and increases in areas of tissue damage, 

including phases of ischemia (O’Sullivan et al., 2001). However, due to the wide range of 

potential contributors to tensor characteristics, the term “integrity” is discouraged by many in the 

field; the true meaning of changes in diffusion metrics is not always clear (D. K. Jones, Knösche, 

& Turner, 2013).  

Beyond the cumulative influence of vascular changes and ischemia on WM structure in AD, 

which may be most accurately indexed by deep WMH and infracts (Section 1.3.6), DTI may be 

sensitive to earlier events in AD pathogenesis, such as the hyperphosphorylation of tau. The tau 

proteins are primarily found in axons, maintaining microtubule-facilitated axonal transport 

(Buée, Bussière, Buée-Scherrer, Delacourte, & Hof, 2000), and DTI is particularly sensitive to 

axonal degeneration. In this way, microstructural WM changes measured with DTI may be a 

harbinger of localized atrophy that contributes to the onset of typical AD symptoms, especially 

in tracts connecting to the medial temporal lobe (Bozzali et al., 2012). The literature on FA and 

MD differences between healthy controls, MCI, and AD subjects shows that changes in these 

metrics between diagnostic groups is somewhat region-specific (though MD shows more 

widespread changes than FA), with significant differences in FA commonly observed between 

AD + MCI vs. controls, but differences in MD between AD vs. controls as well as MCI vs. 

controls (meta-analysis by Sexton et al. (Sexton, Kalu, Filippini, Mackay, & Ebmeier, 2011) and 

reviews by Oishi et al. (Oishi, Mielke, Albert, Lyketsos, & Mori, 2011) and Amlien et al. 

(Amlien & Fjell, 2014)). The regions in which changes are most consistently observed map 

loosely to those affected early by AD pathology and neurodegeneration: they are tracts extending 
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to the entorhinal cortex, hippocampus, and parrahippocamal gyrus (Choo et al., 2010; Fellgiebel 

et al., 2004; Rose et al., 2006; Salat et al., 2010; Zhou et al., 2008), the temporo-parietal cortex 

(Bozzali et al., 2002; Medina et al., 2006; S. Takahashi et al., 2002; S. Xie et al., 2006), and 

posterior cingulate cortex (Choo et al., 2010; Nakata et al., 2008; Y. Zhang et al., 2007; Zhou et 

al., 2008). The major white matter tracts connecting these regions are the uncinate fasciculus 

(UF), the cingulum bundle (CB), the inferior longitudinal fasciculus (ILF), and the inferior 

fronto-occipital fasciculus (IFOF); each have been shown to have reduced “integrity” (i.e. lower 

FA, higher MD) cross-sectionally (Cho et al., 2008; Taoka et al., 2006). In longitudinal analyses, 

the UF has shown increases in MD and decreases in FA with worsening AD symptoms (Acosta-

Cabronero, Alley, Williams, Pengas, & Nestor, 2012; Kitamura et al., 2013) (UF FA correlates 

with MMSE and ADAS-cog score cross-sectionally (Morikawa et al., 2010)). Other white matter 

tracts, such as the superior longitudinal fasciculus (SLF) and the interhemispheric corpus 

callosum (CC), have also been implicated in AD pathogenesis according to what is known as the 

“retrogenesis model of AD” (Bartzokis et al., 2007; Reisberg et al., 1999). This hypothesis states 

that the large-diameter, early-myelinating white matter fibres that are first to develop (such as 

those comprising primary motor tracts) are also those last affected by age-related AD pathology 

(as opposed to thinner, late-myelinating tracts, including neocortical association fibres, such as 

SLF, which are affects first) (Stricker et al., 2009).  

While FA and MD are the most commonly reported DTI metrics in clinical research, two other 

indices derived from the diffusion tensor may represent different underlying microstructural 

changes: radial diffusivity (RD) (diffusion perpendicular to primary fibre direction; may be most 

sensitive to demyelination and dysmyelination (S.-K. Song et al., 2002)) and axial diffusivity 

(AxD) (diffusion parallel to primary fibre direction; may be most sensitive to axonal damage 

(DeBoy et al., 2007; S.-K. Song et al., 2003).  

The choice of diffusion metric analyzed may have important implications for study results; a 

preliminary analysis of 155 subjects from the Alzheimer’s Disease Neuroimaging Initiative  

(ADNI, phase 2) showed that MD, RD, and AxD were more sensitive than FA in differentiating 

between AD, MCI, and controls, using both voxel-wise and ROI-based approaches with TBSS 

(Nir et al., 2013). Other newer metrics describing the diffusion properties of brain tissue are 

microFA (which can differentiate between microstructural shape contributions to diffusion signal 

(e.g. different cell morphologies) (Lasič, Szczepankiewicz, Eriksson, Nilsson, & Topgaard, 
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2014)), dispersion and curvature (descriptions of fibre geometry (Savadjiev, Kindlmann, Bouix, 

Shenton, & Westin, 2010), and free water (a correction for FA that removes isotropic signal due 

to fluid partial volumes (Pasternak, Sochen, Gur, Intrator, & Assaf, 2009)).  

A major limitation of existing DTI approaches is that the complex architecture of white matter 

fibres in the brain often cannot be captured by a single diffusion tensor in one voxel that may 

span several millimetres in three dimensions (fibres often cross within single voxels). As a result, 

FA may be very low in a region of highly intact, cohesive white matter fibres that are crossing. 

To address this issue and others, more recent diffusion imaging methods are being explored; they 

include q-ball imaging (QBI) (Tuch, Reese, Wiegell, & Wedeen, 2003), high angular diffusion 

imaging (HARDI) (Frank, 2002), and diffusion spectrum imaging (DSI) (Wedeen, Hagmann, 

Tseng, Reese, & Weisskoff, 2005).  

In summary, microstructural qualities of white matter can be assessed using diffusion tensor 

imaging and may be indicators of neurodegeneration found in AD. While changes in common 

diffusion metrics are consistently seen in AD-affected brain regions, the interpretation of 

underlying mechanisms remains mostly speculative. New diffusion MRI-based techniques may 

improve our understanding of microstructural white matter changes in the near future. 

  

1.3.8 Major Biomarker Studies 

A number of landmark studies have operated over several decades with the aims of identifying 

the underlying causes and sources of heterogeneity in AD by administering a wide array of 

biomarker tests to well-characterized, large groups of people and performing longitudinal follow-

up. They are of two main types: prospective cohort studies in the general population and 

longitudinal studies of defined target populations. While these are not the only such studies, three 

major efforts that are analyzed in this thesis are the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), the Religious Orders Study (ROS), and the Memory and Aging Project (MAP).  

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an international collaboration of 

59 universities, health centres, and hospitals in the United States and Canada with the primary 

goal of detecting AD at the earliest possible stages and identifying informative biomarkers for 

disease progression (Mueller et al., 2005). To date there have been over 600 publications using 



www.manaraa.com

52 

 

ADNI data (the impact of ADNI was recently reviewed by Weiner et al. (Weiner et al., 2015)). 

The original study (ADNI 1) began in October 2004, under the leadership of principal 

investigator Michael Weiner (University of California, San Francisco), with $67 million in 

funding from the NIA, the National Institute of Biomedical Imaging and Bioengineering 

(NIBIB), 13 private companies, and two  foundations, and was planned to run for five years 

(Mueller et al., 2005). This was a time when neuroimaging and CSF biomarker research in AD 

was just beginning to show promise, and ADNI sought to become the largest longitudinal cohort 

study in history to collect multi-modal neuroimaging (structural MRI and PET), genetic, 

cognitive, clinical, CSF, and blood-based biomarker data in the same set of subjects, with follow-

up (the original goal was to recruit 800 subjects in total; 200 cognitively normal elderly, 400 AD, 

and 200 MCI). Furthermore, one of its primary aims was to make all data and methods publically 

available to researchers worldwide. The original study design included baseline screening and 6- 

and 12-month follow-up for clinical and biomarker assessments. However, as the study grew 

during a period of rapid progress in AD research, it became apparent that more study subjects 

and additional biomarkers were required to address developing hypotheses more conclusively 

(Weiner et al., 2010, 2012). Therefore, in 2009, ADNI was extended into the ADNI GO phase 

(by a two-year NIH Grand Opportunities grant; hence GO), to recruit 200 new subjects with 

early MCI and continue follow-up on 500 controls and MCI subjects from ADNI 1. Finally in 

2010, ADNI funding was renewed (with another $67 million) and the ADNI 2 study phase 

began, with the goal of recruiting 650 new subjects at varying stages of AD (as well as continue 

follow-up on portions of ADNI 1 and ADNI GO subjects). The ADNI 2 protocol introduced DTI 

and [18F]Florbetapir PET for all subjects. ADNI as it is referred to in this thesis is in fact the 

North American ADNI, the founding member of the World Wide ADNI (WW-ADNI) umbrella 

organization that includes ADNIs from seven other countries and continents (Europe, Japan, 

Australia (AIBL), Taiwan, Korea, China, and Argentina (Brazil will soon join as well)). 

The Religious Orders Study (ROS) is an ongoing NIA-funded study headed by David Bennett 

and centered at the Rush University Medical Center (Chicago, IL, USA). Motivation for the 

study came from a lack of prospective, longitudinal, autopsy follow-up studies of elderly with 

normal cognition prior to 1993. Very few had been published (Berg, McKeel, Miller, Baty, & 

Morris, 1993; Crystal et al., 1993; Katzman et al., 1988), all with very small sample sizes (n<20), 

and the trend toward single case studies on AD pathologies in non-demented elderly did not aid 
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the generalizability of findings in this area. To begin answering questions surrounding the 

differences (and similarities) between healthy aging and AD, David Bennett and colleagues at 

Rush University designed a study similar to David Snowdon’s Nun Study. The Nun Study, based 

out of the University of Kentucky, was funded by the NIA and private donors in 1986 as a pilot 

study and was expanded in 1990 to enroll older members of the School Sisters of Notre Dame 

(Mankato, MN, USA) (Snowdon, 1997). It followed 678 sisters (aged 75 and over), most 

cognitively normal at enrollment, all of whom had agreed to postmortem autopsy for the sake of 

education and scientific discovery. Accordingly, the ROS was proposed in 1992 to follow 

members of over 40 religious communities across the US and was funded as a Core of the Rush 

Alzheimer’s Disease Core Center in 1993, with enrollment beginning in 1994 (Bennett, 

Schneider, Arvanitakis, & Wilson, 2012; Wilson, Bienias, Evans, & Bennett, 2004). Whereas the 

Nun Study by design enrolled only women, the ROS initially sought to enroll over 1000 women 

and men. The goals of the study are threefold: 1) identify biomarker associations with AD, MCI, 

and cognitive decline proximate and years prior to death, 2) identify risk factors for AD, MCI, 

and cognitive decline incidence, and 3) model the neurobiological links between disease risk and 

clinical symptoms. A fringe benefit (or, depending on the analysis, a potential confound) of 

analyzing a sample from a uniquely healthy population is the opportunity for gaining insight into 

resilience mechanisms of aging, an active area of research with ROS data (Negash et al., 2013; 

Negash, Bennett, Wilson, Schneider, & Arnold, 2011). Currently, over 1 100 participants have 

been enrolled in ROS, and the study is planned to conclude in June 2016. 

The Memory and Aging Project (MAP) is a study of the same design as ROS (healthy elderly 

subjects evaluated longitudinally with brain donation and autopsy at death), except with subjects 

drawn from a different, more general community-based target population (Bennett et al., 2005). 

In fact, the only exclusion criteria is the inability to sign the Anatomical Gift Act, reducing the 

“healthy volunteer effect” (Lindsted, Fraser, Steinkohl, & Beeson, 1996). Recruitment for MAP 

began in 1997 at over 30 residential facilities across northeastern Illinois and is ongoing. 

Compared to other cohort studies, the recruitment of subjects primarily from continuous care 

retirement communities has resulted in higher study follow-up and autopsy rates. The amount 

and variety of phenotypes that are assessed as part of the ROS and MAP studies are impressive. 

The list includes but is not limited to: clinical diagnoses, cognitive performance, motor function 

and physical frailty, sleep duration and quality, gait, pulmonary function, reports of daily living 
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(including physical activity), ante-mortem biospecimen collection (blood for biomarkers and 

genomics), ante-mortem neuroimaging (MRI, DTI, and PET), and postmortem biospecimen 

collection (for future analyses) and immediate neuropathological evaluation. The combined ROS 

and MAP dataset is immense in size, but more importantly uniquely rich and deeply phenotyped, 

providing statistical power for a wide range of study types and integrative analyses. 

In summary, biomarkers are important for the identification of risk for AD, the diagnosis of 

AD, and potentially the tracking of efficacy of treatments in clinical trials. Specific combinations 

of biomarkers observed in AD and in healthy individuals provide hints as to underlying 

pathogenesis and offer insights into the heterogeneity of the disorder, even beyond more clear-

cut subtypes (outlined in Section 1.1.3). In this thesis, robust biomarkers of multiple AD-related 

mechanisms are measured and analyzed in healthy and AD subjects across the human lifespan to 

draw conclusions about the functional significance of genetic variants that that influence these 

mechanisms through shared pathways. 

 

1.4 Alzheimer’s Disease Genetics 

1.4.1 Background 

Notwithstanding the cumulative environmental and lifestyle factors that influence risk for AD 

(Discussed in Section 1.1.5), biological risk pathways for AD begin at the genetic level, with 

consequent impact on mRNA, protein, brain structure, brain circuitry and then cognitive and 

behavioral impairment. While the early onset FAD is an autosomal dominant condition known to 

be caused by mutations in APP, PSEN1, and PSEN2 genes, late onset AD has a considerably 

more complex genetic foundation (reflected by the range of potential etiopathologies and 

contributors to heterogeneity). The first reports suggesting a genetic component to AD came in 

the early 1980s (R. Harris, 1982); Albert Heyman’s analyses of 68 AD patients and their families 

provided pivotal evidence for the familial aggregation of AD, where the prevalence of AD in the 

families of patients was much higher than in the general population (Heyman et al., 1983). The 

most accurate estimates of AD heritability, which is the proportion of phenotypic variance (i.e. 

having a diagnosis of AD or not) that can be attributed to genetics rather than environment, are 

often cited as those from the Swedish Twin Registry of 392 twin pairs with AD (Gatz et al., 
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2006), and suggest that  approximately 80% of the risk for developing AD may be due 

specifically to genetic factors. 

Before the successful sequencing of the human genome, genetic linkage analysis was used to 

identify genomic regions implicated in heritable diseases (Dawn Teare & Barrett, 2005). Studies 

using this method take advantage of a phenomenon called genetic linkage, whereby the physical 

distance between points on a chromosome (e.g. genes or genetic markers (variants)) determines 

the likelihood that they will be separated by crossover events between chromosomes during 

meiosis (recombination). When the rate of recombination between genetic “markers” is less than 

50%, it can be inferred that they are on the same chromosome (discovered by Thomas Morgan 

and Alfred Sturtevant (Morgan, 1911; Sturtevant, 1913)). One common type of early genetic 

marker used in linkage studies cleverly harnesses the intrinsic functions of simple DNA-cutting 

enzymes known as restriction endonucleases; the presence or absence of certain nucleotides 

within their target sites would determine whether the DNA molecule was cleaved at that location 

(known as restriction fragment length polymorphism (RFLP)), producing DNA fragments of 

differing sizes and providing an indirect way of detecting sequence variation. Positions in the 

genome where one nucleotide may be substituted for another are referred to as single nucleotide 

polymorphisms (SNPs), and different sequence variants of the same genomic region (locus) are 

referred to as alleles; for example, individual A with a [C] nucleotide at SNP position #1 has a 

different allele than individual B, who has a [T] nucleotide at the same SNP position #1. By 

comparing the proportion of offspring in families that possess recombinant vs. parental alleles 

(i.e. estimating the recombination rate), a “map” distance between two markers (in centimorgan 

(cM) units) can be calculated. By combining this genotypic linkage information, which allows 

for the tracking of alleles between generations, with phenotypic information, such as AD 

diagnosis, the approximate location of causal genetic variants that co-segregate with a genetic 

marker can be determined (Pulst SM, 1999).  

As a major landmark in human biological research, the first drafts of the human genome 

sequence were published in 2001 by independent efforts led by Eric Lander, then of the 

Whitehead Institute of Biomedical Research and a key member of the publicly funded Human 

Genome Project (Lander et al., 2001), and Craig Venter, of the private biotechnology company 

Celera  (Venter et al., 2001), in Nature and Science on February 15
th

  and 16
th

, respectively. The 

final non-draft version of the sequence was completed by the Human Genome Project in 2003 
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(13 years after the project began) and published in 2004 (International Human Genome 

Sequencing Consortium, 2004), with an error rate of 1/100 000 nucleotide bases, estimating that 

the 2.85 billion nucleotide genome contained 20 000-25 000 protein-coding genes. This 

accomplishment effectively popularized the genetic association study, which uses more finely-

mapped physical chromosomal coordinates, rather than estimates of recombination rates in 

families, to link phenotypes directly to allele frequencies in samples of unrelated individuals. 

Polymerase Chain Reaction (PCR)-based genotyping methods using sequence-specific DNA 

primers for the tagging of single nucleotide polymorphisms became a popular tool for 

performing such studies, facilitating primarily hypothesis-driven investigations of candidate 

genes within reagions that had been implicated by linkage studies (C. M. Lewis & Knight, 2012). 

The Human HapMap project (Gibbs, Belmont, Boudreau, Leal, & al, 2005), which sought to 

generate a database of known positions of common variation in the human genome, was 

launched in 2002 and facilitated the development for chip-based microarray genotyping methods, 

which allows for the testing of millions of SNP-phenotype associations simultaneously. The 

subsequent lowering of costs for genome-wide genotyping led to the era of GWAS (Hirschhorn, 

2009; Keller et al., 2007). 

 

1.4.2 Genome-wide Association Studies (GWAS) in AD 

The first GWAS in AD was published by Grupe et al. in 2007 (Grupe et al., 2007), who tested 17 

343 SNPs using a multi-tier approach in 1 808 AD cases and 2 062 controls. An additional 10 

case-control and family-based AD GWAS were published between 2007-2009 (see Ertekin-

Taner for comprehensive review (Ertekin-Taner, 2010)), culminating in back-to-back large scale 

GWAS (Harold et al., 2009; Lambert et al., 2009), each of well over 10 000 subjects, both 

uncovering CLU (encoding clusterin, or ApoJ) as a risk locus. Since these first large-scale 

GWAS, seven increasingly large original and meta-analytic studies have been published 

(Hollingworth et al., 2011; X. Hu et al., 2011; Lambert et al., 2013; Miyashita et al., 2013; Naj et 

al., 2011; Wijsman et al., 2011), culminating in a recent 74 000 subject GWAS meta-analysis by 

the IGAP (Lambert et al., 2013). Altogether, there are approximately 25 independent genome-

wide significant loci for AD diagnosis. GWAS of secondary AD phenotypes (such as age-at-

onset (Kamboh et al., 2012; Thambisetty, An, & Tanaka, 2013)) and biomarkers (including 
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hippocampal volume (Bis et al., 2012; Furney et al., 2011; Melville et al., 2012; Stein et al., 

2012), white matter microstructure (Jahanshad, Rajagopalan, et al., 2013), white matter 

hyperintensities (Fornage et al., 2011), cognition (G. Davies et al., 2014; Sherva et al., 2014), 

and AD neuropathology (Beecham et al., 2014; Cruchaga et al., 2013; Ramanan et al., 2014; 

Shulman et al., 2013)) have yielded mixed results, with very little overlap between findings 

(other than APOE). 

While GWAS can serve as a platform for discovery of genomic regions related to AD, they are 

limited by intrinsic difficulties with statistical power and the debatable validity of their original 

underlying assumptions. When originally conceived, the hope was that GWAS could identify all 

sources of heritability for AD and other complex diseases; however, common SNPs genome-

wide (2 046 116 imputed and genotyped) explain only 33.1% of variance in AD (compared to 

heritability estimates of ~80% (Gatz et al., 2006)) (Ridge, Mukherjee, Crane, Kauwe, & 

Alzheimer’s Disease Genetics Consortium, 2013). This discrepancy is common among complex 

illnesses and known as the problem of “missing heritability” (Manolio et al., 2009). There have 

been multiple proposed explanations for this missing heritability (reviewed by expert panel in 

(Eichler et al., 2010)), these commonly include: 1) the underestimation of effect sizes due to 

incomplete linkage disequilibrium (LD) between GWAS SNPs and causal variants , 2) 

undetected contributions of rare variants (i.e. “common disease, common variant” hypothesis vs 

“common disease, rare variant” hypothesis (N. J. Schork, Murray, Frazer, & Topol, 2009)), 3) 

overestimates of heritability due to genetic interactions, epigenetics, or gene-environment 

interactions (Zuk, Hechter, Sunyaev, & Lander, 2012), and 4) the presence of many remaining 

undetected variants of small effect. While advances in statistical genomics have improved the 

discovery capacity of GWAS with methods that allow for the incorporation of a priori 

information (Gagliano, Barnes, Weale, & Knight, 2014; A. J. Schork et al., 2013) to alleviate 

multiple testing burdens (Sun, Craiu, Paterson, & Bull, 2006; C. Xu, Ciampi, & Greenwood, 

2014),  the multi-genic, highly heterogeneous nature of clinical AD is not well-suited to the 

SNP-diagnosis association paradigm; sample sizes required to detect all contributing variants 

(many with questionable effect sizes) are unfeasibly large.  

In Summary, GWAS have played a key role in both the discovery of new AD risk genes and 

validation of existing associations, though they suffer from many fundamental methodological 
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and conceptual limitations. While genome-wide genotype data will no doubt play important roles 

in future study designs, it is likely that the archetypal diagnostic GWAS has reached its potential.  

 

1.4.3 After GWAS: Focusing on Promising Candidates 

Addressing the issues of GWAS and making progress in the “post-GWAS” era (Q. Huang, 2015; 

Visscher, Brown, McCarthy, & Yang, 2012) requires more directed approaches to understand the 

functional consequences of genetic variation implicated in disease (Stranger, Stahl, & Raj, 2011). 

The combining of genetics with informative quantitative phenotype data rather than diagnostic 

status typically demonstrates a several fold larger effect of the risk gene on a specific brain 

structure or other biomarkers, as compared to a clinical phenotype (Meyer-Lindenberg, 2010; 

Meyer-Lindenberg & Weinberger, 2006; Voineskos et al., 2011). When applied in 

presymptomatic individuals, the imaging-genetics approach has the potential to inform where, 

when, and how a gene may exert risk for AD. The genes examined in this thesis (APOE, SORL1, 

TSPO, and BDNF) are not an exhaustive list of AD risk loci by any means. Rather, they were 

chosen carefully based on a priori knowledge of their functional roles in each of the AD 

hypotheses/mechanisms described above (Section 1.2). Only two of these genes have been 

identified by GWAS for AD (APOE and SORL1), however, as outlined above, it is no surprise 

that genes important in AD etiopathogenesis may not be identified by GWAS since the complex 

nature of their contribution cannot be captured by such a simplistic disease model. Candidate 

gene approaches are essential in the field not only for necessary validation, replication, and in-

depth exploration of GWAS associations, but also for discovery; SORL1 is just one example a 

gene that was implicated in AD (Rogaeva et al., 2007) prior to its discovery by GWAS (Feulner 

et al., 2010). 

 

1.4.4 Apolipoprotein E (APOE) 

APOE is the most well-established and impactful genetic risk factor for late-onset AD, and was 

discovered by Allen Roses’ group at the Duke University Alzheimer’s Disease Research Center 

(ADRC) in the early 1990s (Corder et al., 1993; Saunders et al., 1993; Strittmatter et al., 1993). 
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The association of APOE with AD has since been replicated near-universally and across racial 

backgrounds, with one copy of the ε4 allele conferring ~3x risk, and two copies ~13x risk for 

AD in Caucasians (Farrer et al., 1997; Sadigh-Eteghad, Talebi, & Farhoudi, 2012). The number 

of APOE ε4 alleles also correlates with earlier age-at-onset of AD (Corder et al., 1993; Rebeck, 

Reiter, Strickland, & Hyman, 1993). While early results for the association of APOE with AD in 

African American (AA) populations were mixed (D. A. Evans et al., 2003; M. X. Tang et al., 

1998), recent larger studies, including the largest AA population GWAS to date (n=5 896) (Reitz 

et al., 2013) and longitudinal analyses in AA and Yoruba (from Southwestern and North central 

Nigeria) (Hendrie et al., 2014), have confirmed its risk-conferring effect across all ethnic groups, 

albeit with different odds ratios (ORs) (homozygous ε4 vs. non-ε4 ORHispanic~2.2, ORAA~5.7, 

ORCaucasian~13, ORJapanese~33) (C.-C. Liu, Liu, Kanekiyo, Xu, & Bu, 2013). In individuals with 

AD, the estimated prevalence of APOE ε4 carriers is ~49-62%  (meta-analysis of 139 studies (A. 

Ward et al., 2012)), whereas in the general population, the prevalence is much lower, at ~6-20% 

(meta-analysis of 199 studies (P. P. Singh, Singh, & Mastana, 2006)) (Rebeck et al., 1993).  

An advantage of biomarker studies of genetic risk factors is that at-risk groups can be identified 

at any age, regardless of other factors that are influenced by age or environment (e.g. sub-clinical 

accumulation of pathology). Studies of APOE ε4 status in relation to brain structure are very 

inconsistent (reviewed by (Fouquet, Besson, Gonneaud, La Joie, & Chételat, 2014)), with groups 

reporting lower (K. Chen et al., 2007; Lind et al., 2006; Plassman et al., 1997), higher (Honea, 

Vidoni, Harsha, & Burns, 2009; Striepens et al., 2011), and no differences (Filippini et al., 2011; 

Hostage, Roy Choudhury, Doraiswamy, Petrella, & for the Alzheimer’s Disease Neuroimaging 

Initiative, 2013; C. R. Jack et al., 1998; Reiman et al., 1998; H. Schmidt et al., 1996) in gray 

matter volumes between ε4 carriers vs. non-carriers. One explanation for inconsistent findings of 

APOE in imaging-genetics is that ε4 is a mediator, rather than a driver of AD risk, which 

requires additional pathological insults (M. M. Mielke et al., 2011) or genetic risk factors 

(Yajima et al., 2015) to manifest. Another potential explanation is that its effects on cognition 

(Seeman et al., 2005), and both functional (Nichols et al., 2012) and structural (Lind et al., 2006; 

Schuff et al., 2009) brain imaging may be age-dependent (Nichols et al., 2012). This will be 

explored further in Chapter 4 of this thesis.  

The mechanism by which APOE confers these aforementioned changes, and ultimately risk for 

disease, is not well understood. The APOE protein is composed of 299 amino acids and has a 
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molecular mass of ~34kDa, with its genetically-determined isoforms corresponding to 

differences at positions 112 and 158: APOE2 (Cys112, Cys158), APOE3 (Cys112, Arg158), and 

APOE4 (Arg112, Arg158). In the CNS, APOE is normally expressed in glial cells and 

astrocytes, can be expressed in neurons under stress conditions (Q. Xu et al., 2006), and has 

important functions in cholesterol transport, nerve regeneration, the immune response, and 

scavenging toxins (Robert W. Mahley, 1988; Robert W. Mahley, Weisgraber, & Huang, 2006; R. 

W. Mahley & Rall, 2000). Transgenic mice lacking APOE show accumulation of cholesterol-

rich very low density lipoproteins (VLDL) and develop severe atherosclerotic lesions 

(Nakashima, Plump, Raines, Breslow, & Ross, 1994; Reddick, Zhang, & Maeda, 1994). The 

APOE4 isoform possesses two characteristics that have been proposed to underlie its deleterious 

effects in relation to the “neutral” APOE3: 1) lack of stability and 2) domain interaction between 

amino- and carboxyl-terminals that influences binding properties (Nguyen et al., 2014). Its lack 

of stability means that APOE4 is more likely found in a molten globule (unfolded, reactive 

intermediate) form (Morrow et al., 2002) and is more readily degraded (H. Xu et al., n.d.) than 

other APOE isoforms, resulting in increases in lipid binding and membrane disruption, as well as 

other potentially pathogenic functions (Robert W. Mahley & Huang, 2006).  In terms of domain 

interaction and resulting differences in structural conformation, it has been shown that mutant 

APOE4 lacking domain interaction properties behaves like APOE3 (Dong et al., 1994), and that 

interruption of domain interaction in APOE4 by small molecule disruption (a structural corrector 

known as CB9032258) restores mitochondrial and neurite outgrowth deficits in neurons in vitro 

(H.-K. Chen et al., 2012).  APOE4 preferentially binds VLDL, whereas APOE3 binds high 

density lipoproteins (HDL), and thus APOE4 has been associated with hyperlipidaemia, 

hypercholesterolemia, atherosclerosis, heart disease, and stroke (Kalmijn, Feskens, Launer, & 

Kromhout, 1996; Lahoz et al., 2001); ε4 is primarily considered a vascular risk factor. This 

vascular risk conferred by APOE ε4 may act synergistically with other risk factors such as type 2 

diabetes and peripheral vascular disease to increase risk for AD (Haan, Shemanski, Jagust, 

Manolio, & Kuller, 1999; Peila, Rodriguez, Launer, & Honolulu-Asia Aging Study, 2002).  

Further support that APOE exerts AD risk via primarily vascular mechanisms comes from 

functional MRI studies where disruption of the resting state connectivity was observed in ε4 

carriers in the absence of AD pathology (Sheline et al., 2010).  
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APOE may also influence amyloidogenic mechanisms; ε4 has been consistently  associated with 

increased Aβ deposition in healthy, MCI, and AD subjects measured by CSF (Morris et al., 

2010) and PIB-PET imaging (Reiman et al., 2009; Villemagne et al., 2011), and may increase β-

secretase activity (Ewers et al., 2008). APOE was originally thought to bind directly to Aβ to 

facilitate its clearance from the brain. In fact, the serendipitous observation that APOE protein 

immunoreactivity was associated with amyloid plaques and CAA in AD brains led to the 

discovery of the ε4 risk factor in the first place (Namba, Tomonaga, Kawasaki, Otomo, & Ikeda, 

1991). However, it was shown by Verghese et al. (Verghese et al., 2013) that APOE does not 

bind well to Aβ in solution, but rather it competes with Aβ for low-density lipoprotein receptor-

related protein (LRP1)-mediated uptake by astrocytes, thus showing indirect regulatory effects 

on Aβ clearance. APOE ε4 has also been associated with P-tau, though not as consistently 

(Brecht et al., 2004; Morris et al., 2010). Another mechanism via which APOE may influence 

risk for AD is via alterations in brain activity and structure; neuronal activity is shown to regulate 

the levels of interstitial fluid Aβ in AD-vulnerable brain regions (Bero et al., 2011).  It has also 

been shown that the effects of APOE ε4 on core AD pathology in mice may be greater in females 

than males (Alexandra Moser et al., 2015), adding to the complexity surrounding APOE’s effects 

on AD phenotypes. 

In summary, the APOE ε4 allele is undisputedly the strongest known genetic risk factor for late 

onset AD. However, the mechanism by which it confers risk is poorly understood. Evidence 

shows that APOE ε4 status may influence brain structure and cognition as early as childhood, 

however the temporal effects of this gene are not known as studies continue to find conflicting 

results. 

 

1.4.5 Sortilin-Like Receptor (SORL1) 

SORL1 (also known as LR11 and SORLA) is another highly-studied AD risk gene important for 

intra-celluar trafficking of APP and lysosomal targeting of Aβ (for comprehensive review, see 

Thakurta et al. (Thakurta & Andersen, 2015)). The SORL1 protein was first identified as a 

candidate for involvement in AD by Scherzer et al. (Scherzer et al., 2004), who observed that 

levels of the protein were twofold lower in lymphoblasts of AD patients vs. controls, as well as 

reduced by ~25% in neurons (but not glia). Subsequent studies confirmed this decrease in both 
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AD (Ma et al., 2009) and MCI (Sager et al., 2007) patients. The genetic association of SORL1 

with AD was discovered by Peter St. George Hyslop’s group, based at the University of Toronto 

and in collaboration with Boston University (Boston, MA) and Columbia University (New York, 

NY), the same responsible for the discovery of PSEN1 (Sherrington et al., 1995) and PSEN2 

(Rogaev et al., 1995) mutations in FAD. Hyslop was interested in testing associations between 

AD and candidate genes coding for proteins involved in vesicular sorting of APP; specifically, 

the vacuolar protein sorting (VPS) family of proteins, SORL1 included, which had recently been 

implicated in AD by gene-expression profiling (S. A. Small et al., 2005). In multiple datasets, 

including two from Northern European and Caribbean families, two Israeli Arab and North 

European case-control samples, and a fifth independent Caucasian replication sample from the 

Mayo Clinic, they found that SNPs in the same two regions of SORL1 (5’ haplotypes primarily 

in non-Europeans and 3’ haplotypes in Europeans) were consistently associated with AD 

(Rogaeva et al., 2007). They went further to perform exon sequencing of SORL1, finding no rare 

pathogenic variants, which suggests that the causal variants were either genotyped directly or 

contained within introns. Finally, they performed cell biology experiments to demonstrate that 

individuals with AD risk haplotypes showed reduced expression of SORL1 mRNA in brain tissue 

and that SORL1 protein binds to APP, directing its processing to endocytic (amyloidogenic) or 

recycling (non-amyloidogenic) pathways. The arbitrary numbering convention applied to SNPs 

in this seminal study (SNPs 1-29) has been preserved by the field and is still commonly used in 

publications today. Shortly after, SORL1 was identified as significant by a meta-analytic GWAS 

(Feulner et al., 2010), and positive replications in larger samples and different ethnic groups 

began to accumulate (Kölsch et al., 2009; J. H. Lee et al., 2007; F. Liu et al., 2009, 2009; Ning et 

al., 2010; Tan et al., 2009). SORL1 has since become one of the most widely acknowledged AD 

risk genes in the field (meta-analysis (Reitz et al., 2011)). 

SORL1 helps direct the preferential transport of amyloid precursor protein (APP) to endosomal 

recycling pathways, away from beta-secretase cleavage and subsequent Aβ40 and Aβ42 formation 

(Andersen et al., 2005; Offe et al., 2006). In vitro studies have found that increased levels of 

SORL1 result in decreased APP processing (V. Schmidt et al., 2012) and greater production of 

intracellular Aβ42 (Ma et al., 2009; V. Schmidt et al., 2012). Disruption of SORL1 can also 

influence tau-related cellular processes (Capsoni et al., 2013). In vivo, data from AD patients and 

their siblings show that genetic variation in SORL1 is associated with white matter atrophy and 
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hyperintensities, and medial temporal lobe volume in postmortem brain (Cuenco et al., 2008). 

Recently, it also was shown that the effects of SORL1 on hippocampal volume may be present 

healthy young adults (Bralten et al., 2011). Given its role in re-routing amyloid precursor protein 

(Andersen et al., 2005), downregulation of SORL1 in postmortem brain may be a function of the 

mechanism of action of SORL1 genetic risk variants; SORL1 SNPs have been associated with 

SORL1 mRNA expression (McCarthy et al., 2012) and the efficiency of SORL1 translation 

(Caglayan et al., 2012) in postmortem brain. Although genetic association studies have identified 

SORL1 as an AD risk gene, the effect size, like in other non-APOE risk genes, is relatively small 

(Lambert et al., 2013).  

In summary, SORL1 variants are well-established risk factors for AD, though with a weaker 

influence on risk than APOE ε4. Due to its central role in biochemical pathways at the interface 

of amyloid processing and clearance and vascular metabolism, as well as its upregulation by the 

growth factor BDNF, SORL1 is likely a hub of convergence for multiple AD risk mechanisms. 

More work is required to establish where, when, and how SORL1 confers risk for AD in vivo.  

 

1.4.6 Translocator Protein (TSPO) 

The translocator protein (TSPO, previously known as the peripheral benzodiazepine receptor 

(PBR)) is a ubiquitous receptor found on the outer mitochondrial membrane. It was first 

identified in the late 1970s as a high-affinity binding site for the benzodiazepine diazepam (brand 

name Valium) in rat kidneys (Braestrup & Squires, 1977), but since has been shown to be 

present in the CNS (Gulyás et al., 2009; Karlstetter et al., 2014). In the healthy brain, TSPO is 

expressed at low levels in the olfactory bulb, choroid plexus, and glial cells (Banati, 2003; 

Venneti, Lopresti, & Wiley, 2006). In the AD brain, there is an increase in its expression (M.-K. 

Chen & Guilarte, 2008) and this increase is thought to be due to the upregulation of TSPO by 

active microglia (Cagnin et al., 2001; Venneti et al., 2006), which reflect the neuroinflammation 

associated with AD (Section 1.2.6). PET studies of TSPO radioligands show increased binding in 

patients with acute brain injury (M.-K. Chen & Guilarte, 2008), multiple sclerosis (Banati et al., 

2000; Harberts et al., 2013; Oh et al., 2011), MCI (Yasuno et al., 2012) and AD (Cagnin et al., 

2001; Kreisl et al., 2013). TSPO binding is increased in AD subjects, more-so in white matter 
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regions (Colasanti et al., 2014; Takano et al., 2013), compared to controls and is correlated with 

the severity of clinical symptoms (Kreisl et al., 2013).  

In 2010, Owen et al. (Owen et al., 2010) investigated a strange phenomenon whereby ~14% of 

healthy volunteers in neuroinflammation PET imaging studies show no binding signal of the 

TSPO radioligand [11C]PBR28 (Fujita et al., 2008). By comparing the binding of [11C]PBR28 

to that of [3H]PK11195 (a first generation TSPO radioligand that does not show the absent 

signal phenomenon) in rat and human brain tissue, the authors noticed that each individual fit 

into one of three classes based on their tissue’s preference for binding of  [11C]PBR28 over 

[3H]PK11195; they called these phenotype groups high, medium, and low affinity binders 

(herein referred to as HABs, MABs, and LABs, respectively). This, along with the observation 

that TSPO was indeed present in all tissue samples despite the lack of radiographical signal, led 

to the conclusion that TSPO contains two binding sites, and that differences in TSPO structure 

may influence binding properties at one of these sites. In 2012, Owen et al. (Owen et al., 2012) 

demonstrated that the difference between HAB, MAB, and LAB phenotypes could be explained 

by genotype at a SNP located in exon 4 of the TSPO gene, rs6971 (Ala147Thr). Subsequent 

studies have confirmed that this variant reliably determines the binding affinity of second 

generation TSPO radioligands in the brain (Mizrahi et al., 2012), where A/A, A/G, and G/G 

genotypes correspond to HAB, MAB, and LABs. This information is imperative for studies of 

neuroinflammation using second generation TSPO ligands that show genotype-dependent 

binding characteristics, as conclusions on receptor density may be strongly biased when rs6971 

is not accounted for.  

Functionally, it is hypothesized that the Alanine to Threonine substitution at position 147 results 

in a conformational change in TSPO structure that influences its interaction with a variety of 

molecules (Korkhov, Sachse, Short, & Tate, 2010; Murail et al., 2008; Owen et al., 2012). This 

difference in ligand affinity may have important implications for the etiopathology of AD; TSPO 

ligands have been shown to ameliorate neuroinflammation in vitro (Karlstetter et al., 2014), 

reverse neuropathology and behavioral decline in Alzheimer’s disease mouse models (Barron et 

al., 2013), reduce gamma radiation-induced apoptosis, Aβ42-induced neurodegeneration, and 

premature death in drosophila (R. Lin et al., 2014), as well as confer neuroprotective and 

regenerative effects in vivo and in vitro (Ferzaz et al., 2002; Girard et al., 2008; Ryu, Choi, & 

McLarnon, 2005; Veiga, Azcoitia, & Garcia-Segura, 2005).  
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In summary, the TSPO rs6971 variant shows a strong effect on the binding of TSPO 

radioligands in experiments of in vivo neuroinflammation. The role of TSPO variation in 

regulating inflammatory AD-related risk mechanisms via its control of TSPO binding properties 

is not known. 

 

1.4.7 Brain-Derived Neurotrophic Factor (BDNF) 

The brain-derived neurotrophic factor (BDNF) is a growth factor highly expressed in the healthy 

hippocampus and it is thought of as a neuroplasticity molecule, important in learning and 

memory processes (Tapia-Arancibia, Aliaga, Silhol, & Arancibia, 2008). The role of BDNF in 

neuronal growth and maintenance has made it a clear candidate for association with 

neurodegenerative disorders, including AD. In 1991, it was shown that BDNF is under-expressed 

in the hippocampus of patients with AD (Phillips et al., 1991), and since then, both BDNF 

protein levels (Narisawa-Saito, Wakabayashi, Tsuji, Takahashi, & Nawa, 1996; Tapia-Arancibia 

et al., 2008) and BDNF gene variants (S. E. Harris et al., 2006; Y. Y. Lim et al., 2013; Ventriglia 

et al., 2002) have been repeatedly associated with AD.  One specific BDNF gene SNP, known as 

the Val66Met polymorphism (rs6265), has garnered much attention in the liteature, as it alters 

the prodomain of proBDNF protein and determines the efficiency with which newly synthesized 

proBDNF is secreted (Egan et al., 2003). The change in protein sequence influences the 

efficiency with which proBDNF binds to the intracellular trafficking molecule Sortilin, thereby 

affecting the levels of secreted protein in an activity-dependent manner. BDNF Val66Met has 

been associated with several AD-related biomarkers including cortical surface area and 

functional connectivity (C. Wang et al., 2014), brain structure volumes (including hippocampus 

in healthy subjects (Bueller et al., 2006)) (Hajek, Kopecek, & Höschl, 2012; Toro et al., 2009), 

cortical thickness and white matter integrity (Voineskos et al., 2011; Yang et al., 2012), and 

cognitive performance in humans and mouse models (Dincheva, Glatt, & Lee, 2012; Voineskos 

et al., 2011). In fact, increases in volume of multiple brain regions, including the occipital and 

medial temporal gyri, have been observed in BDNF Val homozygotes as early as weeks after 

birth (Knickmeyer et al., 2014). Despite this evidence, GWAS of AD have not implicated BDNF, 

and several studies have found no associations of Val66Met with AD risk or AD biomarkers. 

Many studies have implicated Val66Met in depressive symptoms (Comasco et al., 2011; Dalton, 
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Hammen, Najman, & Brennan, 2014; Verhagen et al., 2008), suggesting that the involvement of 

BDNF may be related to AD-related depression more than AD itself (Borroni et al., 2009). 

Val66Met may also be important in determining an individual’s ability to access cognitive 

reserve (D. Ward et al., 2015), which implies that effects on known AD pathology and risk 

phenotypes should not necessarily be directly apparent. 

Mechanistically, BDNF is critical for neuronal plasticity and facilitates hippocampal and cortical 

long-term potentiation (Figurov, Pozzo-Miller, Olafsson, Wang, & Lu, 1996). Learning and 

memory processes are substantially affected in AD, arising largely from impaired neuronal 

plasticity (Tapia-Arancibia et al., 2008). In AD patients, BDNF expression is prominently 

reduced in the hippocampus and the entorhinal cortex (Narisawa-Saito et al., 1996), and these 

regions are consistently affected in the earliest stages of the disease (Gómez-Isla et al., 1996; J. 

L. Price et al., 2001). Variation in the BDNF Val66Met (rs6265, G>A) polymorphism has been 

shown to be related to episodic memory performance in younger adults via the hippocampal 

formation, where methionine (Met) allele carriers had poorer episodic memory performance 

(Egan et al., 2003). In addition, this polymorphism predicts cognitive performance in elderly 

individuals (S. E. Harris et al., 2006) and may confer risk for AD (Ventriglia et al., 2002), where 

Val/Val individuals in these two studies were at risk. The effects of this polymorphism on brain 

structure and cognition is thought to be a downstream effect of reduced neuronal BDNF 

secretion, due to altered binding of the Methionine residue in the BDNF pro-domain to 

chaperone proteins involved in intracellular transport (Z.-Y. Chen et al., 2005; Egan et al., 2003). 

Recent animal model findings also suggest a compelling potential role for BDNF as a therapeutic 

agent in AD (Nagahara et al., 2009). 

In summary, BDNF is a molecule important in neuroplasticity with a proven relevance to 

cognitive resilience and brain structure. The BDNF Val66Met has been shown to alter the 

secretion of BDNF in brain; however, the literature on its effects on AD-related biomarkers is 

heterogeneous. 
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1.4.8 Gene-Gene Interaction 

William Bateson first coined the term “epistatis” in 1909 (Bateson & Mendel, 1909) to describe 

masking of the phenotypic expression of one gene by another. The loose term “gene-gene 

interaction” can be used to refer to epistasis, though as its name implies, epistatic modification 

effects of one variant on another are nullifying, whereas a gene-gene interaction more broadly 

may refer to a perfectly antagonistic interaction, whereby the effect of one variant is reversed, 

rather than nullified, by another. Generally the term “interaction” refers to a departure from 

independent effects of genetic loci on given phenotypes (Cordell, 2002), though importantly the 

precise definition of independence is not always clear (i.e. statistical independence is different 

than biological independence within pathways (reviewed by Wang et al. (Xuefeng Wang, Elston, 

& Zhu, 2010))). The modeling of genetic interactions can be performed in different ways, 

producing different results and interpretations. Two common examples are 1) binning groups of 

subjects by different pairwise combinations of alleles for multiple variants and testing for group 

differences in a trait, and 2) linear modeling with inclusion of an interaction term and testing the 

significance of a coefficient describing the conditional effect of one genetic variant on another 

(Cordell, 2009). In this thesis, gene-gene interaction is defined as the statistical departure from 

independent effects of SNPs, as determined by the coefficient of the interaction term of a general 

linear model. This definition allows for the detection of different “types” of interactions as 

variably defined, including the nullification of a variant’s effect (epistasis), as well as the 

amplification or reversal of a variant’s effect, by another.  

As mentioned above, the interaction between gene variants is thought to be a potential source of 

“missing heritability” in AD; linear models used in GWAS (i.e. not including interaction terms) 

will fail to detect interacting variants that show no marginal effects. Studies exhaustively 

searching the genome for interaction effects are plagued by multiple comparisons issues (Ueki & 

Cordell, 2012) and large sample size requirements due to reductions in statistical power 

(Gauderman, 2002), however, when interactions are present, these types of scans can yield 

meaningful associations (Marchini, Donnelly, & Cardon, 2005). Using a stepwise approach 

including standard GWAS followed by pairwise interaction analyses of top SNPs, a landmark 

study in over 8 000 individuals (Genetic Analysis of Psoriasis Consortium & the Wellcome Trust 

Case Control Consortium 2 et al., 2010) showed that the effect of one allele (of the endoplasmic 

reticulum aminopeptdase 1 gene ERAP1) only increased risk for psoriasis diagnosis (a complex, 
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autoimmune disease) in the presence of a second allele (of human leukocyte antigen C gene 

HLA-C), and the magnitude of this difference was over 15-fold. Importantly, this finding is 

biologically plausible, as ERAP1 is involved in the presentation of the class I peptide, which is 

encoded by the HLA gene. 

While each of the aforementioned genes has been shown to contribute independently to AD-

related biomarkers and both cognitive and postmortem-confirmed diagnoses of AD, there is 

substantial evidence suggesting that these factors directly interact at the pathway level. SORL1’s 

roles as a receptor for APOE (K Taira, 2001) as well as a modulator of lipoprotein lipase activity 

(Klinger et al., 2011) place it firmly at the intersection of both amyloidogenic and 

cerebrovascular risk for AD. This has led experts in the field to suggest that changes in APOE 

structure due to ε4 genotype could directly influence SORL1’s binding to APP, and subsequent 

risk for disease though Aβ accumulation (Perneczky, Alexopoulos, Eisele, Hans Forstl, & 

Alexander Kurz, 2010). However, the results of studies analyzing the interaction between APOE 

ε4 and SORL1 genotype in AD-related phenotypes are mixed, with multiple studies finding no 

interaction effect on risk for AD (Izzo et al., 2013; Olgiati et al., 2013; Xue, Zhang, Lin, Xu, & 

Jia, 2014) and few finding a significant interaction for AD pathology (Alexopoulos et al., 2011). 

Recent SORL1-APOE interaction analyses have not found any strong replicable patterns (Yin, 

Yu, & Tan, 2014), demonstrating the need for further study. 

The interaction of SORL1 with BDNF, though less studied, has yielded more convergent 

findings. Mouse models have shown that SORL1 expression is induced by BDNF, and that the 

ability of BDNF to lower levels of Aβ levels in primary cortical neurons is dependent on the 

presence of SORL1 (Rohe et al., 2009). The hypothesis that interacting genetic and non-genetic 

factors likely account for differences in SORL1 mRNA expression was first speculated in the 

original Rogaeva et al. report of SORL1’s genetic association with AD (Rogaeva et al., 2007), 

based on observations that the 3’ SORL1 haplotype only accounted for ~14% of the variance in 

expression – the authors had insufficient samples to test the SNPs within the 5’ region. SORL1 

also shares substantial structural homogeneity with another member of the vacuolar protein 

sorting 10 domain protein (VPS10P) family, Sortilin, which has been shown to bind to the 

prodomain of BDNF, specifically at the Val/Met substitution site, with varying affinity (Z.-Y. 

Chen et al., 2005). VPS10P trafficking molecules are important for growth factor transport 

(perhaps via retromer complex function (Fjorback et al., 2012)), and it has also been shown that 
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the cellular response to BDNF signaling is moderated via the trafficking of TrkB by SORL1 

(Rohe, Hartl, Fjorback, Klose, & Willnow, 2013). Most recently, work in neurons derived from 

human induced pluripotent stem cells (iPSCs) showed that the ability of BDNF to up-regulate 

SORL1 mRNA expression (first demonstrated by Rohe et al. (Rohe et al., 2009)) was dependent 

on SORL1 genotype (Young et al., 2015). This provides strong evidence for the hypothesis in 

Chapter 6 of this thesis. 

 

1.4.9 Imaging-Genetics 

In 2000, three seminal reports of differences in brain imaging phenotypes due to genetic 

variation (In order of publication date: SPECT-SLC6A3 (Heinz et al., 2000), PET-APOE (G. W. 

Small et al., 2000), and functional MRI (fMRI)-APOE (Bookheimer et al., 2000)) effectively 

founded the field of imaging-genetics. As defined (Hariri, Drabant, & Weinberger, 2006; Hariri 

& Weinberger, 2003), the imaging-genetics approach capitalizes on the fact that brain structural 

and functional phenotypes lie closer to the biological substrates of complex behavior and 

cognition that constitute clinical diagnosis (i.e. they are intermediate phenotypes (Meyer-

Lindenberg & Weinberger, 2006)), and thus offer improved association and penetration when 

analyzed from a genetic standpoint. Further, the use of non-invasive brain imaging in vivo allows 

for some interpretation regarding region-specific mechanisms of brain susceptibility and 

resilience that are altered by genetics. This information cannot be inferred as well from measures 

of cognition or pathology alone.  

There are two main types of imaging-genetics approaches (Verhoeven, Tuinier, & van der Burgt, 

2008): one in which a gene implicated in disease is assessed for its contribution to imaging 

phenotypes (so-called bottom-up approach, analogous to reverse genetics), and one in which the 

imaging phenotype that is known to be affected in disease is used as an outcome for discovery of 

disease-related genes, as in a complex trait GWAS design (top-down approach, analogous to 

forward genetics). Much work from our group has successfully used the former approach to 

characterize known risk variants for AD (Voineskos et al., 2011) and Schizophrenia (Lett et al., 

2013) across the lifespan using multi-modal imaging phenotypes. Work by the ENIGMA 

consortium and others have produced large GWAS analyses of brain imaging phenotypes, 

including those for hippocampal volume, intracranial volume and other subcortical structure 
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volumes (Hibar et al., 2015; Stein et al., 2012), cortical thickness (Furney et al., 2011), and white 

matter microstructure (Jahanshad, Kochunov, et al., 2013), though genes implicated across 

studies are different and wide- ranging in putative or known functions (e.g. TESC, HMGA2, 

DDR3, ZNF292, ARPP-21). These top-down GWAS approaches suffer from the same issues as 

diagnostic GWAS, except that the problem of multiple comparisons is often compounded based 

on the high-dimensionality of imaging data, and typically genetic effects are very small (e.g. the 

top SNP from Stein et al. (Stein et al., 2012) explained ~0.27% of hippocampal volume variance) 

(Medland, Jahanshad, Neale, & Thompson, 2014). 

The initial study of MRI-based phenotypes with APOE variation (Bookheimer et al., 2000), 

published in the New England Journal of Medicine, examined 30 adults with normal cognition 

(16 APOE ε4 carriers, and 14 APOE ε4 non-carriers) using fMRI, finding that ε4 carriers showed 

increases in both the strength and topological extent of brain activation (measured using the 

brain-oxygen-level dependent (BOLD) signal (Logothetis & Wandell, 2004)) during a verbal 

memory task. This supports the hypothesis that ε4 carriers, who are at increased risk for AD, 

must employ more widespread compensatory brain networks and exert additional cognitive work 

to accomplish the same memory task as non-ε4 carriers. Since this report, dozens of others have 

analyzed BOLD signal between APOE genotype groups, with mixed results (reviewed by 

Trachtenberg et al. (Trachtenberg, Filippini, & Mackay, 2012)): 37% report increases, 26% 

report decreases, 19% report both increases and decreased, and another 19% report no significant 

changes in activation due to ε4 carriage. Potential reasons for this heterogeneity include inter-

study differences in protocol, age interactions across the lifespan (most studies included only 

mid- to late-life samples), as well as well as substantial inter-individual differences in BOLD 

activation that are observed for certain cognitive tasks (Plichta et al., 2012). Structural imaging 

biomarkers including volumetry, cortical thickness, and especially DTI (outlined in Section 1.3.5 

and 1.3.6), may represent more robust, trait-reflective imaging measures by which the effect of 

genetics can be accurately measured (Buchanan, Pernet, Gorgolewski, Storkey, & Bastin, 2014; 

Duchesne, Valdivia, Mouiha, & Robitaille, 2012; Maclaren, Han, Vos, Fischbein, & Bammer, 

2014; Zhao et al., 2015). 
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1.5 Outline of Experiments 

Genetic investigations have the potential to identify molecular subtypes of individuals at any 

stage of the lifespan simply and non-invasively. GWAS and candidate studies together have 

pointed toward a diverse set of biochemical pathways and loci, raising questions about their 

relative contributions to AD susceptibility and progression. Answering these questions will 

inform which biomarkers should be used in intervention studies for genetically at-risk subgroups, 

and the time-point in the lifespan at which such a prevention/treatment study should be started.  

The next chapter (2) will introduce each of the experiments performed as part of this thesis 

(contained in Chapters 3-6) and outline each of their central hypotheses. Chapters three and four 

have been published in two high impact, peer-reviewed journals; JAMA Psychiatry (Letter to the 

Editor) and Molecular Psychiatry (Original Article), respectively. Chapter five has been accepted 

for publication in the Journal of Cerebral Blood Flow and Metabolism (Negative Report), and 

Chapter six is currently in the process of submission. 
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Chapter 2  

2 Overview of Experiments, and Hypotheses 

2.1 APOE ε4, Aging, and Effects on White Matter across the 
Lifespan 

2.1.1 Background 

Much work has been done characterizing the mechanisms of risk posed by the APOE4 isoform 

across the human lifespan. Seminal work in children and adolescents has demonstrated that the 

ε4 allele may exert significant effects on the thickness of entorhinal cortex from an early age 

(Shaw et al., 2007), but studies are not in agreement over whether or not genotype influences rate 

of cortical thinning longitudinally (Espeseth et al., 2008).  In 2012, a study by Nichols et al. 

(Nichols et al., 2012) analyzed the effect of APOE ε4 carrier status on the activation of 

hippocampus during an episodic memory task using fMRI. Interestingly, they found that the 

interaction was dependent on the age of the healthy participants; ε4 carriers showed no 

significant decline in hippocampal recruitment across the age range (19-77 years) whereas the ε3 

homozygotes showed steady decline with age (Nichols et al., 2012). This observation suggested 

that younger ε4 carriers, who are known to be at higher risk for AD, showed greater hippocampal 

function than the neutral risk ε3 homozygotes. We therefore designed an experiment to 

determine if this APOE ε4 age-dependent effect on hippocampal engagement may be driven by 

structural connectivity between hippocampus and cortex, by measuring microstructural integrity 

of a white matter tract called the cingulum bundle, using DTI. 

 

2.1.2 Hypothesis 

We hypothesized that we would observe an age-by-genotype interaction for APOE ε4 carriers vs. 

non-carriers, whereby the APOE ε4 carriers would show a stronger decline in FA with increasing 

age, cross-sectionally, compared to the ε4 non-carriers. This would provide a potential 

neuroanatomical explanation for the functional interaction observed by Nichols et al. (Nichols et 

al., 2012). 
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2.2 The SORL1 Gene and Convergent Neural Risk for 
Alzheimer’s Disease across the Human Lifespan 

2.2.1 Background 

Following growing evidence for the involvement of SORL1 variants in determining risk for AD 

(Rogaeva et al., 2007), Cuenco et al. (Cuenco et al., 2008) sought to investigate the effects of 

these variants on cerebral and hippocampal volume, as well as white matter hyperintensity 

burden. They found that alleles of risk genes in the 5’ region of SORL1 that had been associated 

with risk for AD were actually protective in regard to white matter changes that are typically 

indicative of AD risk. This suggested a divergence in the nature of genetic risk conferred by the 

same SORL1 variants, supported by a 2011 study (Bralten et al., 2011) showing that the same 

brain-protective, yet diagnostic-risk alleles were also associated with increased hippocampal 

volumes in young healthy adults.  In order to better understand the pattern of SORL1’s effects on 

brain structure as they relate to AD risk in healthy subjects, a more informative intermediate 

phenotype that is predictive of the earliest phases of AD would have to be used. To this end, it 

was shown by Zhuang et al. (Zhuang et al., 2012) that individuals who converted from 

cognitively normal to a state of a-MCI over a two year period showed substantial changes in FA 

of the precuneus, parahippocampal cingulum, parahippocampal gyrus, and fornix. We therefore 

designed an experiment to examine the effects of SORL1 on white matter FA across the lifespan. 

To make our analyses more definitive, we included a second imaging-genetics sample (spanning 

early life, ages 8-40) for replication. To further confirm a potential mechanism of action 

consistent with SORL1’s role in amyloidogenic processing, we examined SORL1 effects on gene 

expression (again, across the human lifespan) as well as postmortem amyloid neuropathology in 

a very large cohort of healthy, MCI, and AD subjects (the ROS/MAP combined sample). 

 

2.2.2 Hypothesis 

We hypothesized that AD risk variants within two haplotype blocks of SORL1 would be 

associated with a) lower fractional anisotropy in specific white matter tracts (primarily those 

implicated in AD and the conversion from CN to amnestic MCI: cingulum bundle, superior 
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longidunial fasciculus, and corpus callosum), b) deficits in SORL1 mRNA expression, and c) 

increases in late-life amyloid neuropathology. For parts a) and b), where lifespan data were 

available, we hypothesized that the effects of genotype may be exerted early in life, as the 

independent mechanism of SORL1-dependent APP recycling is thought to be active throughout 

life and not dependent on other aging factors (such as accumulating vascular or neurotoxic 

insults). 

 

2.3 Cerebrovascular and Microglial States are Not Altered by 
Functional Neuroinflammatory Gene Variant  

2.3.1 Background 

In line with the neuroinflammatory hypothesis of AD, it has been shown that levels of activated 

microglia are increased in patients compared to controls. This microglial activation can be 

measured in vivo using PET radioligands with binding specificity to TSPO, which is highly 

upregulated in active microglia (Cagnin et al., 2001; Venneti et al., 2006). The TSPO rs6971 

polymorphism has been established as a strong modifier of TSPO protein binding properties to 

multiple radioligands (Owen et al., 2012), however the possibility that this altered binding to 

exogenous ligands would also have implications for molecular interactions with endogenous 

ligands seems to have gone largely unaddressed. Recently, it was shown that rs6971 had no 

effects on Aβ deposition (measured using [18F]Flobetapir PET) or cognition in the ADNI cohort 

(Fan et al., 2015). While Fan et al. may have chosen these outcome measures due to their 

relevance to AD risk, the functions of TSPO as a cholesterol transporter (Taylor, Allen, & 

Graham, 2014) and putative regulator of inflammatory response (Bae, Shim, Balu, Kim, & Yu, 

2014; Karlstetter et al., 2014; M. Wang et al., 2014) suggest that perhaps phenotypes more 

specific to cerebrovascular and inflammatory AD risk factors might be impacted to a greater, 

potentially detectable degree. We therefore designed a study to examine the effects of the 

functional TSPO rs6971 variants on relevant cerebrovascular and inflammatory phenotypes 

including macro and micro cerebral infarcts, white matter hyperintensity burden, blood-based 

inflammatory biomarkers, and microglial activation measured postmortem. 
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2.3.2 Hypothesis 

We hypothesized that individuals would show TSPO rs6971 genotype-dependent changes in 

white matter hyperintensity volume, likelihood of having cerebral infarcts (both micro and 

macro), levels of pro-inflammatory plasma biomarkers, as well as microglial activation. Due to 

the anti-inflammatory action of certain TSPO ligands, we hypothesize that that low-affinity 

binding groups would have exacerbated pathology and increased levels of pro-inflammatory 

biomarkers vs. medium- and high-affinity binding groups, as determined by genotype. 

 

2.4 Genetic Interaction between SORL1 and BDNF Regulates 
Isoform-Specific SORL1 Expression and Brain Amyloid 

2.4.1 Background 

SORL1, like any other eukaryotic exon-containing gene, can undergo the process of alternative 

splicing to generate transcriptomic diversity in the cell. Despite the importance of this process in 

AD (Tazi, Bakkour, & Stamm, 2009), very few studies have analyzed the differential expression 

of SORL1 transcripts either in AD or as a result of genotype differences. Given the role of 

SORL1 in APP processing and Aβ lysosomal targeting, the regulation of its expression is of 

great interest. Importantly, different types of SORL1 transcripts, which may be lacking important 

protein binding domains that allow SORL1 to carry out its functions, can be quantified using 

RNA-sequencing technology. Recent work by Young et al. (Young et al., 2015), demonstrated 

that the effect of BDNF on SORL1 expression was dependent upon SORL1 genotype. This study 

immediately raises questions about the relationship between functional gene variants in both 

genes: since levels of BDNF secretion in the brain are altered by the Val66Met polymorphism 

(Egan et al., 2003), then it follows that we might observe effects of the Val66Met polymorphism 

on SORL1 expression that are dependent on SORL1 genotype. Further, as indicated by findings 

that BDNF’s effects on amyloid are modulated by SORL1, the question of whether or not any 

gene regulatory effects of a BDNF-SORL1 interaction would concurrently influence amyloid 

pathology should be addressed. We designed a study to test these questions by analyzing all 

SNPs within the SORL1 gene for interaction with Val66Met in models predicting SORL1 

expression of 13 isoforms in the ROS/MAP cohort. We followed this up with analyses of 
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amyloid plaque deposition in the same postmortem sample as well as of in vivo amyloid binding 

using [18F]Florbetapir PET in the ADNI sample. To test for any brain structural effects of the 

SORL1-BDNF interaction, we analyzed over 1 300 MRI and DTI scans from ADNI and 

ROS/MAP. 

 

2.4.2 Hypothesis 

We hypothesized that SORL1 mRNA expression would be dependent on the interaction of the 

BDNF Val66Met polymorphism and common variants within the 5’ region of SORL1. Using 

RNA-seq data, we were able to test this at the level of multiple SORL1 transcripts. Given 

SORL1’s role in amyloidogenic processing, we further hypothesized that any resultant changes 

in SORL1 expression may influence amyloid levels postmortem and in vivo (as measured using 

[18F]Florbetapir PET). If genetic interactions were affecting gene expression and amyloid, then 

we might expect to see parallel changes in brain structure (both gray and white matter) that are 

especially vulnerable AD. From this, our last hypothesis stated that genotypic groups showing 

altered SORL1 mRNA expression and amyloid levels would also show differences in entorhinal 

cortex volume and white matter tract microstructural integrity (measured using DTI). 
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Chapter 3  

3 APOE ε4, Aging, and Effects on White Matter across 
the Adult Life Span 

 

 

 

 

The contents of this chapter have been published as: 

Felsky D, and Voineskos AN. APOE ε4, aging, and effects on white matter across the adult 

lifespan. JAMA Psychiatry. 2013 Jun;70(6):646-7 

 

A link to the published paper can be found at: 

http://archpsyc.jamanetwork.com/article.aspx?articleid=1695575 

 

Reprint with permission from the American Medical Association (license number 

3723860091270).  
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3.1  Letter to the Editor 

The recent paper by Nichols et al. (Nichols et al., 2012) is an important and useful addition in 

efforts to understand the effects of APOE ε4 status on brain function. It was the first to examine 

the effects of apolipoprotein ε4 status using an episodic memory task during functional magnetic 

resonance imaging (MRI) across the adult lifespan. During task performance, the authors found 

an age by genotype interaction, whereby younger ε4 carrier participants showed less 

hippocampal activation compared with ε4 non-carriers, and older ε4 participants trended toward 

increased activation compared to older ε4 non-carriers. Since the original fMRI finding by 

Bookheimer et al.(Bookheimer et al., 2000), several studies have examined neural effects of 

APOE ε4 status during episodic memory performance. A recent review (Trachtenberg et al., 

2012) highlighted the almost equal distribution of either ‘under’ or ‘over’ activation in ε4 

carriers compared to noncarriers during episodic memory fMRI studies in both younger and 

older participants. Therefore, despite the results of Nichols et al., some open questions remain. 

One important consideration (or confound) of ε4 activity on the BOLD signal is the well-

documented effect of the ε4 allele on resting cerebral blood flow (Trachtenberg et al., 2012). 

Indeed, Alzheimer’s patients early in the disease process show decreased blood flow at rest in the 

hippocampal complex and posterior cingulate cortex. Furthermore, the ε4 allele has been shown 

to influence functional connectivity at-rest among regions that comprise episodic memory 

circuitry (E. T. Westlye, Lundervold, Rootwelt, Lundervold, & Westlye, 2011).  

The cingulum bundle, a white matter tract that serves as the main anatomical connection from 

hippocampus to posterior cingulate cortex, and other cortical midline regions, may provide a 

useful framework toward understanding conflicting results in task-based ε4 studies. Cingulum 

bundle integrity is highly correlated with hippocampal atrophy and represents the major source 

of functional disconnection between hippocampus and posterior cingulate cortex in early AD 

(Chételat et al., 2003). Deterioriation of this structure predicts conversion of cognitively normal 

amnestic MCI converters, and is predictive of subsequent episodic memory decline (Zhuang et 

al., 2012). Brain deafferentation through the cingulum plays a substantive role in progressive 

development of cognitive impairment in AD (Bozzali et al., 2012). While others have examined 

the relationship between ε4 status and cingulum bundle integrity, none have done so across the 

adult lifespan. In 97 right-handed healthy adults (age range 18-86 years, 52 males, 45 females) 
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using diffusion tensor imaging methods previously described (Voineskos et al., 2009), we report 

an age by ε4 carrier interaction predicting microstructural integrity of the cingulum bundle 

(F4,92=8.2, p=0.005) (Figure 3-1). E4 carrier (n=27) and ε4 non-carrier (n=70) groups were not 

different on sex, age or IQ. Our findings parallel those of Nichols et al. (Nichols et al., 2012): 

older ε4 carriers (>50 years of age) demonstrated reduced microstructural integrity compared to 

ε4 non-carriers (F2,42=3.9, p=0.05), while the opposite finding was made in young ε4 carriers 

(F2,37=5.4, p=0.03). Others have examined ε4 status effects on white matter integrity in discrete 

age groups (Heise, Filippini, Ebmeier, & Mackay, 2011), but none have used an adult lifespan 

approach.  

 

Figure 3-1. Demonstration of APOE ε4 allele carrier status x age interaction predicting fractional anisotropy (FA) of 

the left cingulum bundle. 
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Our results may provide an explanatory mechanism for the heterogeneous pattern of functional 

activation during episodic memory tasks in ε4 carriers. At rest, disruption of the cingulum bundle 

predicts substantial blood flow alterations in hippocampus and posterior cingulate cortex. 

Furthermore, when a structure such as the hippocampus (itself vulnerable in ε4 carriers) is 

engaged during an episodic memory task, disruption of a major line of anatomical 

communication such as the cingulum bundle may lead to compensatory over or under activation. 

Our results also support the concept of ‘anatagonistic pleiotropy’ (Ihle, Bunce, & Kliegel, 2012), 

whereby young ε4 carriers appear to have higher FA compared to ε4 non-carriers, consistent 

with studies showing that younger ε4 carriers may perform better on cognitive tasks compared to 

ε4 non-carriers at this stage of the lifespan. When taken together, the study by Nichols et al., and 

our own data, support the use of a lifespan approach to help identify genetically-based timing 

and direction of neural risk for dementia. In the future, studies of APOE binding partners, and 

the use of brain network phenotypes, may broaden our understanding of this fascinating, yet still 

perplexing, age by genotype interaction.  
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Chapter 4  

4 The SORL1 Gene and Convergent Neural Risk for 
Alzheimer’s Disease across the Adult Lifespan 
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4.1 Abstract 

Prior to intervention trials in individuals genetically at-risk for late-onset Alzheimer’s disease, 

critical first steps are identifying where (neuroanatomic effects), when (timepoint in the lifespan) 

and how (gene expression and neuropathology) Alzheimer’s risk genes impact the brain. We 

hypothesized that variants in the sortilin-like receptor (SORL1) gene will affect multiple 

Alzheimer’s phenotypes before the clinical onset of symptoms. Four independent samples were 

analyzed to determine effects of SORL1 genetic risk variants across the lifespan at multiple 

phenotypic levels: 1) microstructural integrity of white matter using diffusion tensor imaging in 

two healthy control datasets (n=118, age 18-86, and n=68, age 8-40); 2) gene expression using 

the BrainCloud postmortem healthy control sample (n=269, age 0-92); and 3) Alzheimer’s 

neuropathology (amyloid plaques and tau tangles) using a postmortem sample of healthy, mild 

cognitive impairment (MCI), and Alzheimer’s individuals (n=710, age 66-108). SORL1 risk 

variants predicted lower white matter fractional anisotropy in an age-independent manner, in 

fronto-temporal white matter tracts in both samples at 5% FWE-corrected thresholds. SORL1 

risk variants also predicted decreased SORL1 mRNA expression, most prominently during 

childhood and adolescence, and significantly predicted increases in amyloid pathology in 

postmortem brain. SORL1 Alzheimer’s risk variants predicted impairment in white matter 

pathways and reduced expression of SORL1 mRNA during neurodevelopmental phases of the 

human lifespan. Further, the neuropathological mechanism of risk appears to primarily involve 

amyloidogenic pathways. Interventions targeted toward the SORL1 amyloid risk pathway may 

be of greatest value during early phases of the lifespan. 

 

4.2 Introduction 

Late-onset Alzheimer’s disease (AD) (i.e. onset after 65 years of age) is the most common form 

of dementia and is expected to affect over 115 million individuals worldwide by 2050 (Prince & 

Jackson, 2009). However, there is accumulating evidence that subtle deterioration of brain 

structure may be present decades before the late-life emergence of clinical signs and symptoms 

in people genetically at-risk for this disorder (Fox, 2012; Reiman et al., 2012). The failure of 

phase 3 trials in early stages of AD has hastened calls for intervention prior to clinical disease 
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onset in genetically at-risk groups in whom effects on brain structure or function might be 

present (Reiman et al., 2010). These brain alterations, detectable using advanced neuroimaging 

approaches, can then serve as markers of treatment efficacy during clinical trials. However, prior 

to the initiation of such trials, systematic investigation of where (neuroanatomic effects), when 

(timepoint in the lifespan) and how (gene expression and neuropathology) AD risk genes impact 

the brain is required. After the APOE gene, which has not always shown consistent neural effects 

prior to disease onset (Felsky & Voineskos, 2013; Trachtenberg et al., 2012), a small number of 

confirmed risk genes (Bertram & Tanzi, 2012) for late-onset AD require such systematic 

investigation.  

Among these risk genes is the sortilin-related receptor, L(DLR class), A repeats containing 

(SORL1, sorLA, LR11) gene, which codes for an ApoE receptor (Hoe & Rebeck, 2008). SORL1 

is thought to act within classical AD risk pathways by helping direct the preferential transport of 

amyloid precursor protein (APP) to endosomal recycling pathways, away from beta-secretase 

cleavage and subsequent beta-amyloid (1-42) (Aβ42) formation (Andersen et al., 2005; Offe et 

al., 2006). Disruption of SORL1 has also been shown to influence tau-related cellular processes 

(Capsoni et al., 2013).  Furthermore, SORL1 operates at the interface of AD and vascular disease 

risk by acting in cerebrovascular disease pathways related to AD, where it plays a central role in 

lipoprotein lipase trafficking (Klinger et al., 2011).   

SORL1 genetic variants have been associated with risk for AD in several ethnic groups (J. H. 

Lee, Barral, & Reitz, 2008; Reitz et al., 2011; Rogaeva et al., 2007). These studies have 

implicated single nucleotide polymorphisms (SNPs), primarily within two haplotype blocks at 

the 5’ and 3’ ends of the gene. Recently identified mutations at both ends of the SORL1 gene 

have been described in early-onset AD (Pottier et al., 2012), suggesting a potentially causative 

role for this gene. SORL1 risk variants have been associated with SORL1 expression in 

postmortem brain (Caglayan et al., 2012; Grear et al., 2009), and down-regulation of SORL1 in 

AD and mild cognitive impairment (MCI) brain has also been shown (Sager et al., 2007; 

Scherzer et al., 2004). Furthermore, these variants have been associated with white matter 

atrophy and hyperintensities in late-life (Cuenco et al., 2008), as well as hippocampal volume in 

early adult life (Bralten et al., 2011). However, white matter microstructure (i.e. fractional 

anisotropy) was recently identified as the best MRI-based predictor of conversion from normal 
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cognitive state to amnestic cognitive impairment (Zhuang et al., 2012), underscoring the 

potential of this neuroimaging phenotype to improve detection of early risk for late-onset AD.  

In four independently collected samples, we assessed the effects of SORL1 risk variants on gene 

expression, AD neuropathology, and white matter microstructure in vivo, using the added 

dimension of a lifespan approach. We hypothesized that SORL1 risk variants would influence 

white matter microstructure and SORL1 gene expression, in a temporally linked manner, decades 

prior to the timeframe of typical AD-onset. Given the putative effect of decreased SORL1 

expression on the APP pathway, we also hypothesized that SORL1 risk variants would predict 

increased amyloid-β plaque levels in postmortem brain.  

 

4.3 Methods 

4.3.1 Neuroimaging (CAMH and Zucker Hillside Samples) 

4.3.1.1 CAMH Sample 

142 healthy volunteers (age 18-85) were recruited at the Centre for Addiction and Mental Health 

(Toronto, Canada). All individuals met the following criteria for eligibility in this study: negative 

urine toxicology at time of recruitment, no history of substance abuse, head injury with loss of 

consciousness, seizure, or other neurological disorders, as well as no first degree relative with 

diagnosis of psychotic mental illness. All study participants were interviewed by a psychiatrist, 

and assessed with the Structured Clinical Interview for DSM-IV Disorders (First, Gibbon, & 

Williams, 1995) to rule out the presence of any psychiatric disorder. Of 142 total subjects 

recruited, 119 completed full screening, imaging and genotyping protocols successfully (102 

Caucasian, 10 Asian, 6 other). Genotypic groups were matched for socio-demographic factors 

(see Table 4-1). The protocol was approved by the local Research Ethics Board, and all 

participants provided informed, written consent. All participants were genotyped for six single 

nucleotide polymorphisms (SNPs) in the SORL1 gene (sequentially numbered SNPs 8-10 and 

23-25 as defined by Rogaeva and colleagues, see Table 4-2) (Rogaeva et al., 2007) and two in 

APOE (rs429358 and rs7412) using previously published methods (Felsky et al., 2012). 

Genotype calls were made manually, with two laboratory personnel independently verifying 

results. 10% of sample genotypes underwent quality control duplication. Genotyping success 
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rates of 100% and 98.4% were achieved for all SORL1 loci and both APOE loci, respectfully. In 

the CAMH sample, the 5’ SORL1 SNPs (8-10) were found to be in near-perfect LD, with a 

single individual possessing a non-conforming haplotype. This individual was excluded from 

analysis due to the rarity of this haplotype in our sample, resulting in a final n=118. This final 

subset of subjects also completed an extensive cognitive battery, which included a measure of 

verbal episodic memory from  the Repeatable Battery for the Assessment of Neuropsychological 

Status (RBANS) (Kevin Duff et al., 2008), and a measure of executive function using the Trails 

A and B tests. DTI was conducted on a 1.5T GE Echospeed scanner (General Electric, 

Milwaukee, WI). A single-shot spin echo planar sequence was used with diffusion gradients 

applied in 23 noncollinear directions and B = 1000 s/mm
2
. Two B = 0 images were obtained. 

Fifty-seven sections were acquired for whole brain coverage oblique to the axial plane. Voxels 

were 2.6 mm isotropic. The field of view was 330 mm, and the size of the acquisition matrix was 

128 × 128 mm, with an echo time of 85.5 milliseconds and a repetition time of 15 000 

milliseconds. The entire sequence was repeated 3 times to improve signal to noise ratio. 
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Table 4-1. Demographic Summary Statistics by SORL1 rs689021 Genotype, Recessive Model 

 CAMH Sample (n=118) Zucker Hillside Sample (n=68) 

 SORL1 rs689021 

Genotypic Groups 

Diff SORL1 rs689021 

Genotypic Groups 

Diff 

Demographic G-carriers 

(n=95) 

A/A (n=23) p G-carriers 

(n=53) 

A/A 

(n=15) 

p 

Both Samples       

Age, Y(SD) 45(19) 44(19) 0.87 22(7) 21(8) 0.68 

Education, 

Y(SD) 

15(2) 15(2) 0.69 13(4) 11(4) 0.15 

IQ (SD) 118(8) 118(9) 0.92 107(10) 106(8) 0.89 

Sex  52 M, 43 F 15 M, 8 F 0.48 25 M, 28 F 8 M, 7 F 0.77 

Handedness 86 R, 6 L, 

3 A 

23 R 0.64 59 R, 4 L 13 R, 2 L 0.59 

Ethnicity 84 Cau, 7 

As, 4 O 

18 Cau, 3 

As, 2 O 

0.32 53 Cau 15 Cau - 

APOE ε4, 

N(%) 

24(25) 6(26) 1 9(17) 2(13) 1 

CAMH Only       

MMSE (SD) 29(1) 29(1) 0.76 - - - 

BMI (SD) 25(5) 26(4) 0.48 - - - 

Systolic BP 

(SD) 

124(16) 125(16) 0.80 - - - 

Diastolic BP 

(SD) 

76(11) 74(8) 0.25 - - - 

CIRS-G (SD) 0.9(0.6) 1.1(0.7) 0.14 - - - 

Note: IQ measured using standardized scores of the Weschler Test of Adult Reading (WTAR) for the CAMH 

sample and the Wide Range Achievement Test 3 (WRAT3) for the Zucker Hillside sample. Continuous variables 

(age, education, BMI, IQ, MMSE, BP, and CIRS-G) were analyzed for genotypic group differences using a 

student’s t-test (two-tailed). Factor variables (sex, handedness, ethnicity, and APOE ε4 status) were analyzed using 

Fisher’s exact test (two-tailed). Y = years; M = male; F = female; R = right; L = left; A = ambidextrous; Cau = 

Caucasian; As = Asian; O = other; MMSE = Mini Mental Status Exam; BMI = body mass index 

(height(cm)/weight(kg)2); BP = blood pressure; CIRS-G = Cumulative Illness Rating Scale – Geriatrics. 
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Table 4-2. Details for Analyzed SNPs in SORL1 5’ Haplotype by Study Sample 

Sample SORL1 SNPs Directly Genotyped or Imputed (D/I)   

SNP #   Location 

(Chr:Pos) 

Orientation/Strand Alleles 

(min/ 

maj) 

Phenotypes # Independent 

Tests Performed 

CAMH rs668387 

(D) 

8 11 : 

121367921 

Rev/B T/C White 

Matter FA 

1 (haplotype in 

perfect LD, 

dominant and 

recessive models) rs689021 

(D) 

9 11 : 

121371120 

Rev/T A/G 

rs641120 

(D) 

10 11 : 

121380965 

Fwd/B T/C 

Zucker 

Hillside 

rs668387 

(I) 

8 11 : 

121367921 

Rev/B T/C White 

Matter FA 

1 (haplotype in 

perfect LD, 

dominant and 

recessive models) rs689021 

(I) 

9 11 : 

121371120 

Rev/T A/G 

BrainCloud rs689021 

(D) 

9 11 : 

121371120 

Rev/T A/G SORL1 

mRNA 

1 (recessive 

model) 

ROS/MAP rs668387 

(I) 

8 11 : 

121367921 

Rev/B T/C Aβ Plaques 

 

3 (one in each 

diagnostic group: 

HC, MCI, AD) 

rs689021 

(I) 

9 11 : 

121371120 

Rev/T A/G 

PHFtau 

Tangles 

3 (one in each 

diagnostic group: 

HC, MCI, AD) 
rs641120 

(I) 

10 11 : 

121380965 

Fwd/B T/C 

Note: SNP locations according to NCBI dbSNP build 37. SNP #s correspond to those assigned by Rogaeva et al. 

(2007). CAMH = Centre for Addiction and Mental Health; ROS/MAP = Religious Orders Study / Memory and 

Aging Project; D = directly genotyped; I = imputed (see Methods section); Chr = chromosome; Pos = position; Rev 

= reverse direction; Fwd = forward direction; B = bottom strand; T = top strand; Ex. = exonic; syn = synonymous; 

Ala = alanine;  min = minor allele; maj = major allele; FA = fractional anisotropy; LD = linkage disequilibrium; 

mRNA = messenger ribonucleic acid; Aβ = beta-amyloid; PHFtau = paired helical filament tau; HC = healthy 

controls; MCI = mild cognitive impairment; AD = Alzheimer’s disease. Genotype frequencies of compared groups 

are reported for each sample separately in Tables 4-1 and 4-3.  
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4.3.1.2 Zucker Hillside Sample 

To better characterize the effects of SORL1 during white matter development which plateaus in 

the 4
th
 decade of life (L. T. Westlye et al., 2010), 68 healthy Caucasian subjects (age 8-40) were 

examined from an ongoing study at the Zucker Hillside Hospital, Glen Oaks, NY, by 

advertisement and word of mouth. Exclusion criteria included serious medical illness and any 

history of psychosis or major mood disorders, as determined by structured and semistructured 

assessments (First, Spitzer, Gibbon, & Williams, 2002; Kaufman et al., 1997; Peters et al., 2012). 

Genotypic groups were matched for socio-demographic factors (see Table 4-1). Further details 

on sample characteristics, inclusion and exclusion criteria have been previously published (Peters 

et al., 2012). Genotyping for all subjects was performed using the Illumina (San Diego, CA, 

USA) HumanOmniExpress-12v1.0 BeadChips assay, which contained information for SNP 8 

and SNP 9 (see Table 4-2). Missing genotypes were imputed using data from HapMap 3. APOE 

ε4 status was derived from rs4420638 (a proxy for APOE rs429358, where the rs4420638 G 

allele is linked to ε4). All subjects received a DTI exam at the North Shore University Medical 

Center, Manhasset, NY, on a GE Signa HDx 3.0T system (General Electric, Milwaukee, 

Wisconsin). The sequence included volumes with diffusion gradients applied along 31 non-

parallel directions (b = 1000 s/mm2) and 5 volumes without diffusion weighting (TR = 14 s, TE 

= min, matrix = 128 x 128, FOV = 240 mm). Each volume consisted of 51 contiguous 2.5-mm 

axial slices acquired parallel to the anterior-posterior (AC-PC) commissural line using a ramp 

sampled, double spin-echo, single shot echo-planar imaging (EPI) method. Data acquisition used 

parallel imaging with an acceleration factor of 2. 

 

4.3.2 Postmortem SORL1 mRNA (BrainCloud Sample) 

The BrainCloud postmortem dataset consists of 269 human subjects, ranging from fetal to late-

life, each with genomic data and transcriptomic data for the prefrontal cortex. All subjects had no 

history of significant psychological problems or psychological care, psychiatric admissions, or 

drug detoxification and no known history of psychiatric symptoms or substance abuse, as 

determined by both telephone screening and medical examiner documentation, as previously 

described (Lipska et al., 2006). All individuals from the BrainCloud dataset were genotyped 

using either Illumina (San Diego, CA, USA) Infinium II 650K or Illumina Infinium HD Gemini 
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1M Duo BeadChips and mRNA quantified with the Illumina Human 49K Oligo array (HEEBO-

7 set) according to previously published methods (Colantuoni et al., 2011). 

 

4.3.3 Postmortem Amyloid Load and Tangles (Religious Orders Study 

{ROS} and Memory and Aging Project {MAP} Sample) 

Participants from ROS are older nuns, priests and brothers from across the US (Bennett, 

Schneider, Arvanitakis, et al., 2012), and those from MAP are residents of approximately 40 

senior housing facilities in the Chicago metropolitan area, including subsidized housing 

facilities, retirement communities, and retirement homes as previously described (Bennett, 

Schneider, Buchman, et al., 2012). Both studies, approved by the Institutional Review Board of 

Rush University Medical Center, enroll older persons without dementia who agree to annual 

evaluation and autopsy. All subjects were assessed with a comprehensive decision tree algorithm 

as well as a uniform, structured, clinical evaluation that included a self-report medical history 

obtained by trained nurses and research technicians, a neurologic examination by trained nurses 

and cognitive function testing by trained neuropsychological test technicians. Please see Bennet 

et al. (Bennett et al., 2006) for further detail. The follow-up rate exceeds 95% and the autopsy 

rate exceeds 90%. At the time of analysis, genomic data were available from n=710 autopsied 

subjects in total (249 CN, 182 MCI, 279 AD). For regional quantification of Amyloid-β plaques 

and paired helical filament tau (PHFtau) tangles in postmortem brains, tissue blocks were 

analyzed from entorhinal cortex proper, hippocampus (CA1/subiculum), superior frontal cortex, 

dorsolateral prefrontal cortex, inferior temporal cortex, angular gyrus cortex, anterior cingulate 

cortex, and calcarine cortex. Immunohistochemical analysis was performed to quantify Amyloid-

β and PHFtau for an average measure of pathology across all regions. Details of autopsy 

procedure and quantification of neuropathological measures have been previously published 

(Bennett, Wilson, Boyle, Buchman, & Schneider, 2012). Genomic data was generated using the 

Affymetrix (Santa Clara, CA, USA) Genechip 6.0 platform, with APOE and SORL1 SNP 8-10 

genotypes imputed from MACH (version 1.0.16a) and HapMap release 22 CEU (build 36), as 

previously published (see Table 4-2) (Chibnik et al., 2011). Genotype groups were matched for 

socio-demographic characteristics as described in Table 4-3. 
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Table 4-3. ROS/MAP Demographic Summary Statistics by SORL1 rs689021 Genotype, 

Recessive Model 

 ROS/MAP  Postmortem Sample (n=705) 

 SORL1 rs689021 Genotypic Groups by Diagnosis 

Demographic CN (n=247) MCI (n=180) AD (n=278) 

 G-car 

(n=201) 

A/A 

(n=46) 

Diff 

(p) 

G-car 

(n=144) 

A/A 

(n=36) 

Diff 

(p) 

G-car 

(n=232) 

A/A 

(n=46) 

Diff 

(p) 

Age, Y(SD) 86(6) 87(5) 0.12 89(6) 89(6) 0.73 91(6) 90(5) 0.45 

Education, 

Y(SD) 

17(4) 17(3) 0.91 16(4) 17(3) 0.58 16(3) 16(4) 0.68 

Sex  122 F, 

79 M 

30 F, 

16 M 

0.62 90 F, 54 

M 

21 F, 

15 M 

0.70 159 F, 

73 M 

30 F, 

16 M 

0.73 

APOE ε4, 

N(%) 

33(17) 5(11) 0.50 33(23) 11(32) 0.39 81(35) 18(39) 0.62 

MMSE (SD) 29(2) 28(2) 0.54 28(2) 28(2) 0.48 25(5) 26(4) 0.47 

BMI (SD) 27(5) 27(5) 0.48 27(5) 26(5) 0.57 26(5) 25(4) 0.34 

Systolic BP 

(SD) 

134(19) 131(16) 0.20 137(18) 137(16) 0.90 137(18) 139(18) 0.58 

Diastolic BP 

(SD) 

71(11) 72(10) 0.63 70(14) 72(9) 0.33 71(12) 72(12) 0.69 

Note: Continuous variables (age, education, BMI, MMSE, and BP) were analyzed for genotypic group differences 

using a student’s t-test (two-tailed). Factor variables (sex and APOE ε4 status) were analyzed using Fisher’s exact 

test (two-tailed). SD = standard deviation; car = carrier; CN = cognitively normal; MCI = mild cognitive 

impairment; AD = Alzheimer’s disease; Y = years; M = male; F = female; MMSE = Mini Mental Status Exam; BMI 

= body mass index (height(cm)/weight(kg)2); BP = blood pressure. All subjects were of Caucasian ancestry. 

 

4.3.4 Statistical Analysis 

4.3.4.1 Neuroimaging  (CAMH and Zucker Hillside Samples) 

Each sample was analyzed independently using the same approach; voxel-wise DTI analysis was 

carried out using TBSS (S. M. Smith et al., 2006), part of FMRIB’s Software Library (FSL) (S. 

M. Smith et al., 2004). The outcome measure for DTI analysis was fractional anisotropy (FA), 

which measures the degree of directionality of water diffusion in the brain and is thought to be 

an indicator of microstructural tissue integrity (affected by fibre density, axonal diameter, and 

extent of myelination) (Beaulieu, 2002). FA images were created by fitting a tensor model to the 

raw diffusion data using FMRIB’s Diffusion Toolbox (FDT), and then brain-extracted using the 

FSL Brain Extraction Tool (BET) (S. M. Smith, 2002). All subjects' FA data were then aligned 
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to the FMRIB58 FA standard using FMRIB’s Nonlinear Image Registration Tool (FNIRT), 

which uses a b-spline representation of the registration warp field. After affine registration to 

Montreal Neurological Institute 152 (MNI152) space, the mean FA image was created and 

thinned to form a mean FA skeleton representing the centers of all tracts common to the group 

(using a masking threshold of 0.2). Each subject's aligned FA data was then projected onto this 

skeleton and the resulting data were analyzed using voxel-wise cross-subject statistics (general 

linear models, co-varying for age, APOE ε4 status, and sex). For post hoc analysis, peak 

significant voxels within major white matter tracts were selected, and FA values at these voxels 

used as outcome measures in linear regression models to measure genotypic effects in relation to 

age. 

Due to near-perfect linkage of the 5’ SORL1 haplotype (SNPs 8-10), all individuals were 

grouped according to rs689021 genotype using dominant (major allele [G] homozygotes vs. 

minor [A] carriers) and recessive (minor allele [A] homozygotes vs. major allele [G] carriers) 

models to determine the direction of effect. 5000 permutations were performed for each contrast 

and voxels were deemed significant if p<0.05 after threshold-free cluster enhancement (TFCE) 

correction for multiple comparisons across space. In both samples, post hoc analysis was 

performed for peak voxels within select tracts using OLS regression (R statistical software 

v.2.15.1) to visualize how genotype related to FA across age, using voxel FA as the dependent 

measure, co-varying for sex and APOE ε4 status.  

 

4.3.4.2 Postmortem SORL1 mRNA (BrainCloud Sample) 

The only SORL1 SNP (within the SNP 8-10 haplotype) available in the Braincloud sample was 

rs689021 (SNP 9). Raw data were extracted and analyzed externally using R. Ordinary least 

squares (OLS) regression models were used, including restricted cubic splines to evaluate non-

linear effects and interactions of genotype and age within ethnic subgroups (Caucasian and 

African American (AA)) together and separately, co-varying for sex, postmortem interval, and 

sample pH. Samples with an RNA integrity number (RIN) (Schroeder et al., 2006) of less than 

7.0 were excluded from analysis to help reduce confounding due to poor RNA quality.  
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4.3.4.3 Postmortem Amyloid Load and Tangles (Religious Orders Study 
{ROS} and Memory and Aging Project {MAP} Sample) 

Of the total 710 subjects, 5 (0.7%) had non-conforming SORL1 5’ haplotypes and were therefore 

excluded from analysis, resulting in a final n=705 for which SNPs 8-10 were in perfect LD. For 

neuropathology measures, the distributions of Aβ and PHFtau were heavily right skewed. We 

therefore performed median splits of each measure to create binary factors with values 

corresponding to zero-low and moderate-high pathology levels. The resulting data were analyzed 

using logistic regression to model these levels of Aβ and PHFtau as a function of SORL1 

rs689021 (SNP 9) genotype group, using an additive model with three genotypic groups, then 

using dominant (major allele [C] homozygotes vs. minor [T] carriers) and recessive (minor allele 

[T] homozygotes vs. major allele [C] carriers) models, co-varying for age, APOE ε4 status, sex, 

and education. Analysis was performed separately within each diagnostic group (CN, MCI, AD), 

and correction for multiple comparisons (2 pathological measures x 3 diagnostic groups=6 

independent tests) was performed using FDR with q=0.05.  

Following consistent evidence in existing literature of a strong and robust LD structure within 

the 5’ region of SORL1 (specifically the haplotype defined by SNPs 8-10) (Caglayan et al., 2012; 

Feulner et al., 2010; Kimura et al., 2009; Meng et al., 2007; Tan et al., 2009), as well as our own 

findings of near perfect LD within each analyzed sample (rare haplotype group frequencies were 

prohibitively low (<1%) and only present in the CAMH and ROS/MAP datasets), we chose to 

analyze one representative SNP across all four samples (SNP9, rs689021). 

 

4.4 Results 

4.4.1 Neuroimaging Samples (CAMH and Zucker Hillside Samples) 

In both the CAMH and Zucker Hillside samples, the 5’ haplotype block (SNPs 8-10) showed 

significant associations with white matter FA (Figure 4-1), with rs689021 A allele homozygotes 

showing reduced FA primarily in fronto-temporal white matter tracts, including the bilateral 

superior longitudinal fasciculus, uncinate fasciculus, inferior fronto-occipital fasciculus, and 

cingulum bundle, as well as right inferior longitudinal fasciculus, and the genu and splenium of 

the corpus callosum in both samples at 5% family-wise error (FWE) corrected thresholds. 



www.manaraa.com

93 

 

Additionally, the Zucker Hillside sample showed effects of genotype within the internal capsule. 

No effects of SNPs 23-25 were found in the CAMH sample. Post hoc analysis revealed a pattern 

of reduced FA in rs689021 A-allele homozygotes that was consistent across the age-range of 

both samples (i.e. no interaction with age) (Figure 4-2). 

 

 

Figure 4-1. Results of TBSS white matter analysis for CAMH (A) and Zucker Hillside (B) imaging-genetics 

datasets. The average white matter FA skeletons for each sample have been overlaid on the MNI152 1mm T1-

weighted brain standard and significant voxels are indicated by yellow-red colouring, corrected for multiple 

comparisons using TFCE at p<0.05. Only voxels within the mean FA skeleton (Green) were analyzed, surrounding 

voxels have been colo ured for emphasis. UNF = uncinate fasciculus; IFOF = inferior fronto-occipital fasciculus; 

CB = cingulum bundle; CC = corpus callosum; IC = internal capsule; ARC/SLF = arcuate fasciculus/superior 

longitudinal fasciculus; (R) = right; (L) = left. 
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Figure 4-2. Regression model residuals of white matter fractional anisotropy at select peak voxels (as determined 

using TBSS) plotted against age, according to SORL1 rs689021 genotypic group ([A] allele homozygotes vs. [G] 

allele-carriers) in both the CAMH and Zucker Hillside samples. Models co-varied for sex and APOE ε4 status. 

 

4.4.2 Postmortem SORL1 mRNA  (BrainCloud Sample) 

After removing observations with RIN<7.0, age<0, and missing sample PH information, ethnic 

subgroup sample sizes were 3 (Asian), 5 (Hispanic), 90 (Caucasian), and 99 (AA). Based on 

these group sizes, analysis was conducted in the Caucasian and AA subgroups only. In the 

combined Caucasian and AA sample (n=189), a significant non-linear genotype by age 

interaction was found (F12,176=4.06, p=0.008), co-varying for ethnicity, pH, PMI and sex, 

whereby major differences in SORL1 mRNA levels were prominent during childhood and 
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adolescence into early adulthood. During this period, the A-allele homozygotes demonstrated 

reduced prefrontal SORL1 mRNA. Analyzing ethnic subgroups separately revealed that the 

effect was driven by Caucasians (F11,78=7.03, p=0.0003) (Figure 4-3). No effect of SORL1 

variation was found in the AA group (F11,87=0.1, p=0.97).  

 

 

Figure 4-3. SORL1 mRNA expression in the prefrontal cortex plotted against age, according to SNP 9 (rs689021) 

genotype in the BrainCloud postmortem sample. Raw expression data are shown fit with loess smoothing curves for 

each genotype. Ordinary least squares regression model shows a non-linear genotype by age interaction (interaction 

effect: F11,78=7.03, two-tailed p=0.0003). 
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4.4.3 Postmortem Amyloid Load and Tangles (Religious Orders Study 
{ROS} and Memory and Aging Project {MAP} Sample) 

Associations of SORL1 rs689021 (SNP 9) genotype with Aβ were found in both MCI (dominant 

model, GG genotype<A carriers, O.R.=0.34 (95% C.I.=0.16-0.73), p=0.0056 (padj=0.03)) and 

AD (recessive model, AA genotype>G carriers, O.R. = 3.05 (95% C.I.=1.29-7.22), p=0.011 

(padj=0.03)) subjects, but not in the CN group (genotypic model O.R.=1.2, p=0.65). For PHFtau, 

an association trend with rs689021 genotype was found in CN subjects (genotypic model, 

AA>GG, O.R.=2.26 (95% C.I.=0.98-5.21) , p=0.055 (padj=0.11)), but not in the MCI (genotypic 

model O.R.=0.96, p=0.93) or AD (genotypic model O.R.=1.41, p=0.42) groups. While the 

PHFtau result did not survive FDR correction, it is worth noting that the same T allele associated 

with greater Aβ pathology was also associated with increased PHFtau. 

 

4.5 Discussion  

We found that SORL1 risk variants influenced microstructure of white matter tracts with known 

susceptibility in AD, in both imaging-genetics datasets, with consistent effect from childhood 

onward. We then bridged the gap from genetic risk variants to brain structure by demonstrating 

that the same SORL1 risk variant predicted lower levels of mRNA expression across the lifespan, 

most prominently in childhood and adolescence, demonstrating a temporal consistency of onset 

of neural risk with our findings in both neuroimaging samples. Finally, we demonstrated that 

variation at the SORL1 gene predicts amyloid-β plaque levels, thus conferring neuropathological 

risk via the amyloidogenic pathway.   

In both the CAMH and Zucker Hillside samples, SORL1 risk variants were associated with lower 

white matter FA in structures vulnerable in MCI and the earliest phases of AD. Conventional 

MRI studies show brain changes in AD typically occur first in medial temporal structures, 

spreading globally as the disease progresses (de Leon et al., 2004; Clifford R. Jack et al., 2004; 

Karas et al., 2004). DTI studies in AD have shown that this gray matter neurodegeneration is 

paralleled by impairment in white matter tract microstructure (i.e. FA), primarily in association 

fibers connecting to the medial and lateral temporal lobes (H. Huang et al., 2012). These changes 

are also present in MCI individuals who have not yet developed dementia (Pievani et al., 2010; 
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Y. Zhang et al., 2009). The results of a recent study, which identified parahippocampal white 

matter FA (part of the cingulum bundle in the medial temporal lobe), as the single best 

neuroimaging predictor of incipient cognitive impairment (Carmichael & Salloway, 2012) raise 

the possibility that white matter changes may precede gray matter changes in the sequence of 

preclinical AD-related neural events. Our data support that the very earliest forms of genetically-

mediated neural risk for AD may occur through white matter pathways, from childhood onward. 

A previous examination of SORL1 and white matter found increased risk for postmortem white 

matter atrophy and white matter hyperintensities in elderly individuals in vivo in the elderly 

white MIRAGE (Multi-Institutional Research in Alzheimer’s Genetic Epidemiology) cohort 

(Cuenco et al., 2008). Although white matter hyperintensities can be present earlier in adult life, 

they are generally uncommon in healthy young individuals (Hopkins et al., 2006), and as such, 

may not be as useful as microstructural integrity of white matter when assessing subtle forms of 

early neural risk for AD. 

Our lifespan analysis using BrainCloud demonstrates that the effects of SORL1 risk variants on 

SORL1 mRNA expression are most prominent from childhood through to early adulthood (i.e. 

during neurodevelopmental phases of the lifespan). Minor allele homozygotes showed reduced 

mRNA expression during this period in the lifespan, consistent with our findings of reduced 

microstructural integrity of white matter already present from childhood onward in the Zucker 

Hillside sample and from late adolescence onward in the CAMH sample. Previous studies have 

found allelic differences in SORL1 protein (Caglayan et al., 2012) and mRNA levels (McCarthy 

et al., 2012) in elderly postmortem brain; however, by using a lifespan approach, we provide the 

first evidence that the temporal impact of SORL1 risk variants on SORL1 mRNA expression 

occurs during neurodevelopmental phases of the lifespan, rather than in late-life.  

Our association of SORL1 genotype with amyloid-β plaque levels provides direct 

neuropathological evidence that SORL1 confers risk for AD through the amyloidogenic pathway. 

Our results confirm those of in vitro studies which have found that increased levels of SORL1 

result in decreased APP processing (V. Schmidt et al., 2012) and greater production of 

intracellular Aβ42 (Ma et al., 2009; V. Schmidt et al., 2012). Loss of SORL1 expression in 

histologically normal late-onset AD brain-derived neurons (Dodson et al., 2006; Scherzer et al., 

2004) suggests that this is a primary event in late-onset AD pathology and may precede disease 

onset. SORL1’s role in amyloid accumulation supports its role as a risk factor for AD rather than 
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as a marker of disease progression. Our findings do not support SORL1 as a marker of disease 

progression (i.e. accumulation of tau pathology) in AD populations, which have recently been 

shown to be due to an entirely different set of genetic factors (Cruchaga et al., 2010). Although it 

is possible that subtle changes in Aβ42 concentration resulting from allelic differences in SORL1 

expression drive changes in microstructural integrity of white matter early in life, our study 

cannot directly answer this question. Indirect evidence for this possibility is provided by inverse 

correlations of CSF levels of SORL1 protein with Aβ42 in MCI subjects (Alexopoulos et al., 

2012), and association of CSF levels of Aβ42 with medial frontal FA (Bendlin et al., 2012).   

There are several potential limitations to this study. First, in healthy control samples, it is 

possible that subclinical symptomatology might be present, and this caveat should be taken into 

consideration when interpreting our results. However, the similar results in both of our 

neuroimaging samples, which were from different countries and of different age range, provide 

added confidence in our results. Second, as with any group-wise analysis of means, the relatively 

small group sizes of risk allele homozygotes in some of our samples can be considered a 

limitation. However, statistically significant associations were found in each sample, and the 

direction of effect was consistent across samples. Third, due to the cross-sectional nature of our 

analyses, we cannot unequivocally conclude that the imaging results are specific to risk for AD, 

as white matter impairments are prevalent in other disorders, such as depression, that are known 

to affect older adults (White, Nelson, & Lim, 2008). It is important to note, however, that SORL1 

is considered an Alzheimer’s risk gene, based both on genome-wide analysis and meta-analysis 

(Reitz et al., 2011). Furthermore our findings align with previous investigations of regions/tracts 

that are first affected in early AD and MCI, such as the cingulum bundle, (Carmichael & 

Salloway, 2012; Y. Zhang et al., 2007) uncinate fasciculus,(Larroza, Moratal, D’ocón Alcañiz, 

Arana, & por la Alzheimer’s Disease Neuroimaging Initiative, 2013; Morikawa et al., 2010) and 

corpus callosum (J.-H. Wang et al., 2013). 

Importantly, our findings must be viewed in context of the existing literature.  In the initial 

Rogaeva et al. (Rogaeva et al., 2007) study (as well as the Reitz et al. meta-analysis (Reitz et al., 

2011)), the SNP 8-10 haplotype associated with increased risk for AD diagnosis was CGC. In the 

Cuenco et al. (Cuenco et al., 2008) imaging study, it is the A allele at SNP 9 (corresponding to 

the TAT haplotype) that is associated with increased risk for AD-associated imaging phenotypes 

(notably white matter atrophy and hyperintensities), and the T allele at SNP 8 (belonging to the 
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same TAT haplotype) was associated with smaller hippocampal volumes in the only other 

imaging investigation of SORL1 gene variants by Bralten et al. (Bralten et al., 2011). Our 

neuroimaging results, along with our results of mRNA expression and beta-amyloid, are in 

agreement with these existing structural imaging findings within the 5’ region of SORL1. 

Therefore, when all genetic investigations of SORL1 are taken together, it appears that allelic 

heterogeneity may be operating at these loci.  

The demonstrated effects of SORL1 variation on brain structure, SORL1 mRNA, and amyloid 

pathology coupled with our lifespan approach, provide answers about when, where, and how this 

gene confers neural risk for AD. Our study identifies SORL1-related risk mechanisms and 

neuroimaging biomarkers that can be utilized in potential intervention studies targeted toward 

risk carriers, yet our findings also raise questions regarding when in the lifespan such 

interventions should be tested. At the same time, it is clear that variation at the SORL1 gene, 

except for rare cases of identified mutations, is unlikely to act as a causative factor alone for late-

onset AD. Therefore, systematic assessment of other risk genes using similar multi-level lifespan 

approaches are first required to move closer toward targeted genetically-based interventions in 

healthy individuals at-risk for late-onset AD.  
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Chapter 5  

5 Cerebrovascular and Microglial States are Not Altered 
by Functional Neuroinflammatory Gene Variant  

 

 

 

The contents of this chapter have been accepted for publication in the Journal of Cerebral Blood 

Flow and Metabolism as a Negative Report: 

Felsky D et al. Cerebrovascular and Microglial States are Not Altered by Functional 

Neuroinflammatory Gene Variant.  

 

 

 



www.manaraa.com

102 

 

5.1 Abstract 

Alzheimer’s disease is characterized by the accumulation of plaque and tangle neuropathology as 

well as chronic neuroinflammation. The translocator protein (TSPO) is thought to be a marker 

for neuroinflammation; recent studies have implicated TSPO in multiple neurological and 

psychiatric conditions with immunological components (e.g. Bipolar disorder, Alzheimer’s 

disease). Known links between vascular factors, inflammation, and dementia have solidified 

cerebrovascular disease phenotypes (in particular white matter hyperintensities and cerebral 

infarcts) as markers of Alzheimer’s disease risk and progression. The TSPO rs6971 

polymorphism reliably determines binding of multiple TSPO radioligands in the brain, however, 

it is not known if this change in binding affinity affects pathological or inflammatory processes 

important in neurodegenerative disease and no study to date has examined the relationship 

between rs6971 and structural neuroimaging, postmortem neuropathology, or inflammatory 

biomarkers. We performed comprehensive analyses of the effects of rs6971 on in vivo white 

matter hyperintensities, as well as both in vivo and postmortem cerebral infarcts. To examine 

potential mechanisms, we also analyzed the effects of rs6971 on plasma inflammatory 

biomarkers in living subjects and microglial density at three stages of activation measured from 

postmortem brain tissue. In two large, independent elderly cohorts (ADNI 1, GO, and 2: ntotal=1 

330; ROS/MAP: ntotal=1 015), we found no significant associations of genotype with cerebral 

infarcts (either postmortem or in vivo) or white matter hyperintensities. Further, we found no 

replicated genotype effects on plasma inflammatory biomarkers, cerebral amyloid angiopathy, or 

microglial activation. Taken together, our results do not support a contribution of rs6971 to 

cerebrovascular and inflammatory risk factors implicated in Alzheimer’s disease. 

 

5.2 Introduction 

Late-onset Alzheimer’s disease is characterized by the accumulation of beta-amyloid plaques 

and neurofibrillary tangles, chronic inflammation, and progressive neurodegeneration (Akiyama, 

1994; Heneka, O’Banion, Terwel, & Kummer, 2010; Hommet et al., 2014; Rubio-Perez & 

Morillas-Ruiz, 2012). The inflammation hypothesis of Alzheimer’s disease posits that chronic 

over-activation of microglia in response to the buildup of amyloid pathology results in a positive 
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feedback loop whereby pro-inflammatory conditions sustain the elevated expression of factors 

that further exacerbate amyloidogenesis (Akiyama, 1994; Bagasra et al., 1995; Kummer et al., 

2011, 2012). Accordingly, serum levels of high-sensitivity C-reactive protein have been shown 

to increase risk for Alzheimer’s diseaseup to three-fold (R. Schmidt et al., 2002), and some 

evidence suggests that non-steroidal anti-inflammatory drugs may both reduce the likelihood of 

developing Alzheimer’s disease if taken by pre-symptomatic healthy adults (Breitner et al., 2011; 

Vlad, Miller, Kowall, & Felson, 2008) and slow the rate of cognitive decline in patients (Rich et 

al., 1995) (potentially through both amyloidogenic (Sastre et al., 2006) and inflammatory 

processes (McGeer & McGeer, 2007; Vlad et al., 2008)). In addition to the damaging effects of 

“traditional” neuroinflammation, the immune response also serves to protect against 

neurodegeneration; studies show that increased expression of certain inflammatory cytokines 

may reduce Aβ deposition (Chakrabarty, Herring, Ceballos-Diaz, Das, & Golde, 2011) and play 

roles in promoting cell survival and neurovascularization (Glass, Saijo, Winner, Marchetto, & 

Gage, 2010; Rubio-Perez & Morillas-Ruiz, 2012).  

The convergence of inflammation and cerebrovascular pathology in Alzheimer’s disease is 

becoming increasingly clear, yet the mechanisms behind this convergence are poorly understood. 

It is known that cerebral ischemia is a strong activator of the immune response (del Zoppo et al., 

2000; Iadecola & Alexander, 2001), and that, in parallel, vascular irregularities (e.g. 

hypertension/hypotension, hypercholesterolemia, ischemic stroke, transient ischemic attack, 

diabetes, cardiac disease) are themselves risk factors for Alzheimer’s disease (Casserly & Topol, 

2004; de la Torre, 2002). Amyloid deposition within neurovasculature, known as cerebral 

amyloid angiopathy (CAA), may contribute to brain ischemia and lead to cognitive impairment 

(Greenberg, Gurol, Rosand, & Smith, 2004; Viswanathan & Greenberg, 2011). Cerebral infarcts 

are regions of ischemic damage associated with aging and present to a greater degree in 

individuals who develop Alzheimer’s disease than in those who do not (Vermeer et al., 2003).  

The presence of both macro and micro cerebral infarcts, caused largely by cerebral small vessel 

disease (SVD) (Pantoni, 2010), have been shown to influence risk for Alzheimer’s disease as 

well as global cognitive performance (Arvanitakis, Leurgans, Barnes, et al., 2011; J. A. 

Schneider et al., 2003; van Rooden et al., 2014), and may be a consequence of accumulating 

cerebrovascular insults (and accompanying hypoperfusion (Suter et al., 2002)) that are 

implicated in neurodegenerative processes (Farkas & Luiten, 2001). At the neuroimaging level, 
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white matter lesions associated with SVD can be imaged in vivo as regions of increased signal on 

T2-weighted MR images; these white matter hyperintensities (WMH) have been associated with 

increased age, the presence of cerebral infarcts, multiple vascular disease risk factors, 

Alzheimer’s disease and mild cognitive impairment (MCI) diagnosis, and the progression from 

MCI to Alzheimer’s disease (Brickman, 2013; Yoshita et al., 2006).  

At the molecular genetic level, the translocator protein 18kDa (TSPO, formerly known as the 

peripheral benzodiazepine receptor (PBR)) has recently become a focus of interest in the 

investigation of psychiatric and neurological illnesses with potential immune mechanisms of 

illness. TSPO is expressed in activated microglia and used as a biomarker for neuroinflammation 

(Cagnin et al., 2001; Venneti et al., 2006); it is found in the outer mitochondrial membrane 

where it is thought to regulate cholesterol transport, steroidogenesis, and apoptosis (Veenman, 

Papadopoulos, & Gavish, 2007). In vivo positron emission tomography (PET) imaging studies of 

TSPO radioligands show increased binding in patients with acute brain injury (M.-K. Chen & 

Guilarte, 2008), multiple sclerosis (Banati et al., 2000; Harberts et al., 2013; Oh et al., 2011),  

mild cognitive impairment (MCI) (Yasuno et al., 2012) and Alzheimer’s disease (Cagnin et al., 

2001; Kreisl et al., 2013). TSPO binding is increased in Alzheimer’s disease subjects compared 

to controls and is correlated with disease severity (Kreisl et al., 2013). Consistent with TSPO’s 

proposed role in neuroinflammation, TSPO binding is increased specifically in white matter in 

patients with multiple sclerosis (Colasanti et al., 2014; Takano et al., 2013). A single genetic 

polymorphism located in exon 4 of the TSPO gene, rs6971 (Ala147Thr), reliably determines the 

binding affinity of second generation TSPO radioligands in the brain (Mizrahi et al., 2012; Owen 

et al., 2012), where A/A, A/G, and G/G genotypes correspond to high, medium, and low affinity 

binding phenotypes (herein referred to as HABs, MABs, and LABs, respectively). It is 

hypothesized that the Alanine to Threonine substitution at position 147 results in a 

conformational change in TSPO structure that influences its interaction with a variety of 

molecules (Korkhov et al., 2010; Murail et al., 2008; Owen et al., 2012). This difference in 

ligand affinity may have important implications for the etiopathology of Alzheimer’s disease; 

TSPO ligands have been shown to ameliorate neuroinflammation in vitro (Karlstetter et al., 

2014), reverse neuropathology and behavioral decline in Alzheimer’s disease mouse models 

(Barron et al., 2013), reduce gamma radiation-induced apoptosis, Aβ42-induced 

neurodegeneration, and premature death in drosophila (R. Lin et al., 2014), as well as confer 



www.manaraa.com

105 

 

neuroprotective and regenerative effects in vivo and in vitro (Ferzaz et al., 2002; Girard et al., 

2008; Ryu et al., 2005; Veiga et al., 2005).  

Despite this potential involvement of TSPO in the etiopathology of neurodegenerative disorders, 

and the well-known links between inflammation, cerebrovascular disease, and AD, no studies to 

date have investigated the effect of rs6971 on MRI-based phenotypes or inflammatory 

biomarkers. We therefore sought to test whether TSPO rs6971 genotype was associated with in 

vivo structural imaging measures of cerebrovascular disease and neuroinflammation in two large 

clinical samples (the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Religious 

Orders Study / Memory and Aging Project (ROS/MAP)). To identify potential mechanisms of 

action, we also analyzed the effect of genotype on levels of plasma inflammatory biomarkers in 

living subjects, as well as on cerebral infarcts, CAA, and densities of active microglia from 

postmortem brain tissue. Due to the anti-inflammatory action of TSPO ligands (Leaver et al., 

2011), we hypothesize that that low-affinity binding groups would have exacerbated pathology 

and increased levels of pro-inflammatory biomarkers vs. medium- and high-affinity binding 

groups, as determined by genotype. 

 

5.3 Methods 

5.3.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

Subject Characteristics: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multi-

center collaboration established in 2003, in which elderly subjects at various stages of cognitive 

impairment are assessed longitudinally for multi-modal imaging, neuropsychiatric test 

performance, and fluid biomarkers. Clinical evaluations were administered to each subject at 

enrollment by trained physicians as described (Petersen et al., 2010). A total of 699 individuals 

(195 cognitively normal (CN), 338 late mild cognitive impairment (LMCI), and 166 Alzheimer’s 

disease subjects) from ADNI 1 and 631 individuals from ADNI GO and 2 (129 CN, 40 

significant memory concern (SMC), 242 early mild cognitive impairment (EMCI), 122 LMCI, 

and 98 Alzheimer’s disease subjects), all self-reported Caucasian, with baseline data for white 

matter hyperintensity volume (WMHv) and genetics were included in analyses (ntotal=1 330).  A 

subset of subjects from ADNI 1, GO, and 2 also had data for cerebral infarcts (ntotal=1 151).  
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Data were extracted from the ADNI website (http://adni.loni.usc.edu) in the form of the 

ADNIMERGE 0.0.1 package for R. Details on subject recruitment and inclusion/exclusion 

criteria are reported elsewhere (Petersen et al., 2010). 

Genetics: All subjects were genotyped using the Human610-Quad BeadChip assay (Illumina, 

Inc., San Diego, CA), which included the rs6971 SNP. APOE ε4 status was obtained separately 

by genotyping rs429358 and rs7412 using PCR and HhaI restriction enzyme digestion, according 

to previously published methods (Saykin et al., 2010).  

 

5.3.2 Religious Orders Study / Memory and Aging Project (ROS/MAP) 

Subject Characteristics: The Religious Orders Study (ROS) and Memory and Aging Project 

(MAP) are community-based cohort studies of aging and dementia. Participants in ROS are older 

nuns, priests and brothers from across the US (Bennett, Schneider, Arvanitakis, et al., 2012), and 

those in MAP are older residents of northeastern Illinois (Bennett, Schneider, Buchman, et al., 

2012). Both studies were approved by the Institutional Review Board of Rush University 

Medical Center and enroll older persons without dementia who agree to annual evaluation and 

autopsy. The follow-up rate exceeds 90% and the autopsy rate exceeds 85%.  A neuroimaging 

sub-study was initiated in 2009 (Fleischman et al., 2014). 

A total of 1 015 postmortem brains were available for analysis at time of these analyses. All 

subjects were assessed with a comprehensive uniform, structured, clinical evaluation that 

included a self-report medical history obtained by trained nurses and research technicians, a 

neurologic examination by trained nurses and cognitive function testing by trained 

neuropsychological test technicians. Full details on sample characterization and assessments 

have been previously published (Bennett et al., 2006). 

Genetics: All subjects were genotyped using the Affymetrix (Santa Clara, CA, USA) Genechip 

6.0 platform. TSPO rs6971 was directly genotyped. APOE (rs7412 and rs429358) genotypes 

were imputed from MACH (version 1.0.16a) and HapMap release 22 CEU (build 36), as 

previously described (Chibnik et al., 2011). 
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5.3.3 In Vivo Neuroimaging 

5.3.3.1 ADNI 

Neuroimaging acquisition: Structural MRI images (including T1, T2, PD) were acquired for all 

subjects using a standard protocol on 1.5T scanners across multiple sites. Correction for gradient 

non-linearity was performed using gradwarp and standardization across sites and platforms was 

performed as previously published (Clifford R. Jack et al., 2008).  

Cerebral infarct quantification: The presence of cerebral infarcts was evaluated for all subjects 

in ADNI 1, GO, and 2 using the same method, outlined by De Carli et al. on the ADNI website 

(DeCarli, Carmichael, & He, 2013). Each subject’s MR image set was evaluated by a specially 

trained physician, and the presence of MRI infarction was determined based on the size, location, 

and imaging characteristic of the lesion. Only lesions 3mm or larger qualified for consideration 

as cerebral infarcts. Inter-rater reliability for detection of infarcts as assessed with the kappa 

statistic was generally high (between 0.73 and 0.90), consistent with previous studies (DeCarli et 

al., 2005; Hachinski et al., 2006). 

WMH volume estimation: For ADNI 1 – WMHv estimates were derived from T1, T2, and PD 

images using a method described elsewhere (Schwarz, Fletcher, DeCarli, & Carmichael, 2009). 

This method uses models of WMH spatial distributions from a training dataset of “ground truth” 

FLAIR-based WMH detections (derived from a strongly-validated semi-automated protocol 

(Yoshita, Fletcher, & DeCarli, 2005)). These models are combined with a probabilistic model of 

the PD, T1, and T2 intensity distributions in a Bayesian Markov Random Field framework that 

allows for inference of WMH positions in novel subject images. The output standardized WMHv 

data used for ADNI1 analyses were available in the “ucd_adni1_wmh” file downloaded as part 

of the ADNIMERGE (0.0.1) R package.  

For ADNI GO and 2 - Volumes for CSF, gray matter, white matter, and WMH were calculated 

from FLAIR and T1-weighted images using a four-tissue Bayesian segmentation method, 

outlined by De Carli et al. on the ADNI website (DeCarli, Maillard, & Fletcher, 2013). Briefly, 

FLAIR images were first affine transformed to T1-weighted images and inhomogeneity 

correction was performed (DeCarli et al., 1996). Images were then non-linearly registered to a 

standard template space and WMHv was estimated using a modified Bayesian probability 
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structure based on a previously published method of histogram fitting (DeCarli et al., 1999). 

WMHv and other tissue segmentations were then reverse transformed to native space. Output 

unstandardized WMHv data used for ADNI GO and 2 analyses were available in the 

“ucd_adni2_wmh” file downloaded as part of the ADNIMERGE (0.0.1) R package. 

 

5.3.3.2 ROS/MAP  

Neuroimaging acquisition: A subset of subjects with genetic data (n=291) underwent a multi-

modal neuroimaging protocol that included high-resolution T1-weighted magnetization-prepared 

rapid acquisition gradient-echo (MPRAGE) and T2-weighted fluid attenuated inversion recovery 

(FLAIR) scans. Detailed scan acquisition parameters have been published elsewhere (Arfanakis 

et al., 2013). 

WMH volume estimation: WMHv estimates were extracted from scans using an automated 

pipeline, as described (Arfanakis et al., 2013). First, T1-weighted MPRAGE images were 

spatially registered to the T2-weighted FLAIR images using affine registration (FLIRT, FMRIB, 

University of Oxford, UK) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; S. M. 

Smith et al., 2004). Brain was then extracted using FSL’s brain extraction tool (BET) (S. M. 

Smith, 2002) and WMHs were automatically segmented for each participant using a support 

vector machine classifier considering both T1-weighted MPRAGE and T2-weighted FLAIR 

information (WMLS, SBIA, University of Pennsylvania, PA) (Zacharaki, Kanterakis, Bryan, & 

Davatzikos, 2008). 

 

5.3.3.3 Statistical Analysis 

All statistical analyses were performed using R statistical software (version 3.0.2). The presence 

or absence of cerebral infarcts across ADNI 1, GO, and 2 was evaluated as a dichotomous 

outcome using logistic regression, with TSPO genotype (additive model), sex, age, diastolic 

blood pressure (hypertension y/n in ROS/MAP), education (total years), and APOE ε4 status as 

predictors. Post-hoc tests were performed to evaluate the effect of genotype within each 

diagnostic group separately. 
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Ordinary least squares (OLS) regression was performed on baseline data to model the effect of 

TSPO genotype on WMHv. Due to important differences between white matter hyperintensity 

volume estimate methodologies between ADNI 1, ADNI GO and 2, and ROS/MAP, the datasets 

were analyzed separately. In all three datasets, the distributions of WMHv were right-skewed; 

therefore Box-Cox power transformations were applied (Box & Cox, 1964). The effect of TSPO 

genotype was evaluated using an additive model in all subjects (controlling for age, sex, diastolic 

blood pressure (hypertension y/n in ROS/MAP), education (years), and APOE ε4 status). Since 

the ADNI 2 FLAIR-derived WMHv estimates were not normalized to a standard space, models 

of this data co-varied for total intracranial volume. Post-hoc tests were carried out within each 

diagnostic group separately. Due to their biologically related functions in cholesterol transport 

(Dimitrova-Shumkovska, Veenman, Roim, & Gavish, 2013) and TSPO’s ability to up-regulate 

APOE (Taylor et al., 2014), interactions between APOE ε4 status and TSPO genotype were also 

tested in each model.  

 

5.3.4 In Vivo Plasma Biomarkers 

5.3.4.1 ADNI 1 

Data were available from a subset of individuals from ADNI 1 (n=520) who contributed plasma 

aliquots for proteomic analysis. The 190 analyte multiplex immunoassay panel, referred to as the 

human discovery map, was developed on the Luminex xMAP platform by Rules-Based 

Medicine (Myriad RBM, Austin, TX) to contain proteins previously reported in the literature as 

altered in cancer, cardiovascular disease, metabolic disorders and inflammatory conditions. The 

method uses a flow-based laser apparatus to detect fluorescent polystyrene microspheres which 

are loaded with different ratios of two spectrally distinct fluorochromes. Full protocol details are 

available through the ADNI website (http://adni.loni.usc.edu/wp-

content/uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf). Concentrations of five 

inflammatory biomarkers were available that were also assayed in the ROS/MAP sample: tumor 

necrosis factor alpha (TNFα), interleukin-6 receptor (IL6R), C-reactive protein (CRP), vascular 

cell adhesion protein 1 (VCAM1, CD106), and matrix metallopeptidase 9 (MMP-9). 
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5.3.4.2 ROS/MAP 

A subset of subjects (n=394) had blood drawn and plasma inflammatory biomarkers quantified 

according to previously published methods (Arfanakis et al., 2013). Briefly, blood samples were 

collected using a standard protocol, then highly sensitive multiplexed sandwich ELISA arrays 

(Endogen Searchlight technologies, Billerica, MA) were used to detect plasma concentrations of 

five inflammatory proteins that were also assessed in the ADNI 1 plasma proteomic assay, as 

described above.  

 

5.3.4.3 Statistical Analysis 

OLS regression was used to analyze the additive effect of TSPO genotype on plasma 

concentrations of each biomarker within ADNI and ROS/MAP subsamples separately. Outcomes 

were tested for normality using the Shapiro-Wilk test (Royston, 1995) and corrected, if necessary 

(Shapiro-Wilk p<0.01), using Box-Cox power transformations (Box & Cox, 1964). P-values 

were corrected for five independent comparisons (five plasma proteins) using the Bonferroni 

method. Models co-varied for age, sex, and APOE ε4 status. Post-hoc tests were carried out 

within each diagnostic group separately and interactions of rs6971 genotype with APOE ε4 status 

were also considered. 

 

5.3.5 Postmortem Neuropathology (cerebral infarcts, amyloid 
angiopathy, and microglial density), ROS/MAP 

5.3.5.1 Neuropathological Evaluation 

Brain autopsies were conducted at predetermined sites across the United States and 

neuropathological examinations were performed at Rush University Medical Centre. Full details 

of autopsy and pathological evaluation procedures have been previously published (Arvanitakis, 

Leurgans, Barnes, et al., 2011; Bennett et al., 2005). 

Macro cerebral infarcts: brains were removed, cut coronally into 1cm slabs and examined by a 

certified neuropathologist: age, size, and location of all cerebral infarcts were documented. Slabs 
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from one hemisphere were fixed for three days (4% paraformaldehyde) and were then further 

dissected. Suspected infarcts were excised, embedded in paraffin, and confirmed using 

hematoxylin & eosin stain.  

Micro cerebral infarcts: a minimum of nine regions in a single hemisphere were examined on 

6µm paraffin-embedded sections stained with hematoxylin/eosin. Age and location of micro 

infarcts were recorded. Because acute and subacute infarcts were unlikely to be related to 

dementia, we only considered chronic macro and micro infarcts; these included cavitated or 

incomplete infarcts, with few remaining macrophages and fibrillary gliosis. Both macro and 

micro cerebral infarcts were coded as either present (one or more infarcts) or absent, as 

previously reported (J. A. Schneider et al., 2003).   

Cerebral amyloid angiopathy (CAA):  For a subset of 894 subjects, tissue from five regions 

(midfrontal, inferior temporal, angular gyrus, and calcarine cortices, as well as hippocampus) 

was dissected from paraformaldehyde-fixed slabs, paraffin-embedded, cut into 20-μm sections, 

and mounted on glass slides. CAA was assessed in each region using immunohistochemical 

labeling with anti-Aβ (Clone 6F/3D, M 0872; DAKO; 1:100). Because CAA has been shown to 

be highly correlated across regions and most subjects showed some degree of pathology in this 

sample (Arvanitakis, Leurgans, Wang, et al., 2011), CAA was averaged across all five dissected 

regions and categorized into a 3-level factor variable, corresponding to 1) no-to-minimal, 2) 

mild-to-moderate, and 3) moderate-to-very severe pathology. Full details have been previously 

described (Arvanitakis, Leurgans, Wang, et al., 2011). 

Quantification of activated microglia: Immunohistochemistry was performed on a subset of 

brains using an Automated Leica Bond immunostainer (Leica Microsystems Inc., Bannockborn 

IL) and anti-human HLA-DP, DQ, DR antibodies (clone CR3/43; DakoCytomation, Carpinteria 

CA; 1:100), according to methods described previously (Bradshaw et al., 2013). Briefly, the 

densities of microglia present at three stages of activation were quantified in four brain regions: 

inferior temporal, mid-frontal, posterior putamen, and ventral medial caudate. Different stages of 

microglial activation - from least (stage 1) to most (stage 3) activated - were defined based on 

morphological characteristics; when these cells become activated, their long fine processes 

contract and thicken and the cell body adopts a larger more rounded cellular conformation. Cell 

counts were made by a trained investigator (blinded to clinical and pathologic data) from two 
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adjacent blocks of tissue within each region (0.5 to 1.0 cm apart), and were averaged to obtain 

composite average densities of microglia in each region. 

 

5.3.5.2 Statistical Analysis 

Logistic regression was used to evaluate the association of TSPO rs6971 genotype with the 

presence or absence of micro and macro cerebral infarcts. Genotype effects were initially tested 

using an additive model across all diagnostic groups, controlling for age at death, sex, 

hypertension (y/n), education (years), and APOE ε4 status. P-values were corrected for seven 

independent comparisons (brain-wide micro infarcts, macro infarcts, amyloid angiopathy, and 

microglial activation in four distinct regions) using the Bonferroni method. Post-hoc tests were 

carried out within each diagnostic subgroup separately. Ordinal regression was used to evaluate 

the degree of amyloid angiopathy across diagnostic groups using the same modeling approach 

and set of co-variates as above (for cerebral infarcts). Linear regression was used to evaluate the 

effect of genotype on total microglial density (all stages of activation), as well as the square root-

transformed ratio of most active (stage 3) to least active microglia (stage 1), in each region, co-

varying for age at death, sex, and APOE ε4 status. Interactions between APOE ε4 status and 

TSPO genotype were also considered for each model. For all analyses, P-values are two-tailed 

and reported as corrected (pcor, using the Bonferroni method as specified in Methods) or 

uncorrected (praw). 

 

5.4 Results 

5.4.1 In Vivo Cerebral Infarcts and White Matter Hyperintensities (ADNI 
and ROS/MAP) 

Table 5-1 summarizes demographic characteristics of the ADNI 1 and ADNI GO and 2 cohorts 

analyzed, according to TSPO rs6971 genotype.  
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Table 5-1. Summary Statistics for ADNI Samples by Diagnosis 

ADNI 1 (n=699) 
CN 

(n=195) 
SMC EMCI 

LMCI 

(n=338) 

AD 

(n=166) 
Diff p 

WMHv* (SD) 0.8 (2) - - 0.9 (3) 1.3 (3) 0.07 

CI (-/+)
a
 18+,177- - - 30+,308- 13+,153- 0.9 

Age, Y (SD) 75 (7) - - 75 (7) 76 (7) 0.22 

Sex (F/M) 
88 F, 107 

M 
- - 

117 F, 221 
M 

75 F, 91 
M 

0.018 

BP (systolic) 133 (15) - - 133 (17) 135 (18) 0.35 

BP (diastolic) 73 (10) - - 74 (10) 73 (9) 0.61 

MMSE (SD) 29 (1) - - 27 (2) 23 (2) <0.0001 

Education, Y (SD) 16 (3) - - 16 (3) 15 (3) 0.0002 

APOE ε4 status (-/+) 53+,142- - - 185+,153- 112+,54- <0.0001 

rs6971 genotype 

(LAB/MAB/HAB) 
20/88/87 - - 25/135/178 18/66/82 0.33 

  
     

  

ADNI GO/2 (n=631) (n=129) (n=40) (n=242) (n=122) (n=98) Diff p 

WMHv* (SD) 6.8 (13) 
8.5 
(11) 

7.3 (9) 7.7 (10) 8.7 (10) 0.7 

CI (-/+)
a
 

6+,113-
,10 NA 

40 NA 
20+, 184-, 

38 NA 
6+, 75-, 41 

NA 
1+, 35-, 
52 NA 

0.35 

Age, Y (SD) 74 (6) 72 (5) 71 (7) 72 (8) 75 (8) 0.0002 

Sex (F/M) 
62 F, 67 

M 
27 F, 
13 M 

102 F, 140 
M 

52 F, 70 M 
38 F, 60 

M 
0.025 

BP (systolic) 134 (16) 
131 
(17) 

132 (17) 132 (18) 131 (17) 0.76 

BP (diastolic) 74 (10) 72 (9) 73 (9) 73 (10) 74 (10) 0.87 

MMSE (SD) 29 (1) 29 (1) 28 (2) 28 (2) 23 (2) <0.0001 

Education, Y (SD) 16 (3) 17 (3) 16 (3) 16 (3) 16 (3) 0.16 

APOE ε4 status (-/+) 34+,95- 12+,28- 105+,137- 69+,53- 66+,32- <0.0001 

rs6971 genotype 

(LAB/MAB/HAB) 
19/51/59 5/20/15 26/108/108 9/56/57 10/42/46 0.75 

Note: *volumes are in mm3, normalized to a standard space. aSample sizes for MRI cerebral infarcts (CI) are 

different than those indicated in column headers, some non-overlapping subjects were evaluated for CI: ADNI1 
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(nCN=196, nLMCI=339, nAD=167), ADNI GO/2 (nCN=123, nEMCI=207,nLMCI=83,nAD=36).  Continuous variables (age, 

education, MMSE, and BP) were analyzed for diagnosis group differences using ANOVA (two-tailed). Factor 

variables (sex, CI, APOE ε4 status, and rs6971 genotype) were analyzed using Fisher’s exact test (two-tailed). 

LAB=low affinity binders (rs6971 A/A); MAB=medium affinity binders (rs6971 A/G); HAB=high affinity binders 

(rs6971 G/G); MAF=minor allele frequency; WMHv=white matter hyperintensity volume; CI = cerebral infarcts 

detected by MRI; MMSE=mini mental status examination; APOE=Apolipoprotein E; BP=blood pressure (mmHg); 

MMSE=mini mental status exam; SD=standard deviation; M=male; F=female; Y=years; CN=cognitively normal; 

SMC=some memory concern; EMCI=early mild cognitive impairment; LMCI=late mild cognitive impairment; 

AD=Alzheimer’s disease. 

 

In the ADNI 1, GO, and 2 combined Caucasian sample (n=1 151), rs6971 genotype was not 

associated with the presence of cerebral infarcts (Wald Χ
2

1=1.98, praw=0.16) (Figure 5-1). 

However, there was a nominal association with infarcts in the LMCI group (Wald Χ
2

1=3.98, 

praw=0.047), whereby likelihood of having infarcts increased stepwise with decreasing binding 

affinity (ORLAB:HAB=2.97, C.I.95%=[1.01,8.70] ). No associations were observed in the CN (Wald 

Χ
2

1=2.67, praw=0.10), EMCI (Wald Χ
2

1=0.01, praw=0.94) or Alzheimer’s disease group (Wald 

Χ
2

1=1.13, praw=0.29), though there were no Alzheimer’s disease subjects who had both infarcts 

and the rs6971 LAB genotype, making additive model inference in this subgroup impossible. 

 

 

Figure 5-1. Odds Ratios (ORs) for rs6971 effect on presence of cerebral infarcts in the ADNI 1, GO and 2 

combined sample (n=1 151) and ROS/MAP (n=1 015) samples. ORs are shown for the additive model homozygote 

contrast (i.e. HABs vs. LABs). ROS/MAP=Religious Orders Study/Memory and Aging Project; ADNI=Alzheimer’s 
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Disease Neuroimaging Initiative; HAB=high affinity binding genotype; MAB=medium affinity binding genotype; 

LAB=low affinity binding genotype. 

 

In three independent samples (ADNI 1, ADNI GO/2, and ROS/MAP) there were no associations 

of rs6971 genotype with WMHv (Figure 5-2), though in ADNI 1 (n=699), rs6971 genotype 

showed a trend-level association with WMHv (additive F1,692=2.87, praw=0.091). The direction of 

this trend in ADNI 1 was consistent with that observed in the combined sample for infarcts, with 

HAB subjects showing both lower risk for presence of infarcts and greater WMHv (though 

neither result was significant at p<0.05). Also, in ADNI GO an 2 (n=631), there was a weak 

association of rs6971 with WMHv in the EMCI group (n=242, additive F1,234=3.55, praw=0.061), 

however the allelic pattern of this trend was in the opposite direction as in ADNI 1, whereby 

LAB subjects had lower WMHv. No interactions of rs6971 genotype and APOE ε4 status were 

found (all praw>0.1). 
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Figure 5-2. White matter hyperintensity volume (WMHv) plotted by rs6971 genotype group in ADNI 1 (n=699), 

ADNI GO and 2 (n=631), and ROS/MAP (n=291) samples. WMHv is plotted as the residuals of linear models that 

include the following co-variates: age, sex, diastolic blood pressure (hypertension y/n for ROS/MAP), APOE ε4 

status, education, and total intracranial volume (ADNI 2 only). No results show evidence to reject null association 

(all additive P>0.05). ROS/MAP=Religious Orders Study/Memory and Aging Project; ADNI=Alzheimer’s Disease 

Neuroimaging Initiative; HAB=high affinity binding genotype; MAB=medium affinity binding genotype; LAB=low 

affinity binding genotype. 
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5.4.2 Plasma Inflammatory Biomarkers (ADNI and ROS/MAP) 

In the ADNI 1 subsample with plasma inflammatory biomarker data (n=520), no main effect of 

rs6971 genotype was found for any biomarker (all praw>0.1, see Figure 5-3). Post-hoc testing 

revealed effects of genotype on TNFα levels in the Alzheimer’s disease subjects (n=104, additive 

F1,99=10.92, praw=0.0013), however this effect was not replicated in the ROS/MAP Alzheimer’s 

disease subsample (n=85, additive F1,80=0.34, p=0.24). Further, there were no main effects of 

rs6971 genotype on any biomarker in the ROS/MAP sample subset (Figure 5-3) or within any 

diagnostic group separately, and no significant interactions of rs6971 and APOE ε4 status were 

found in either subsample (all pcor>0.05). 

 

 

Figure 5-3. Null effects of TSPO rs6971 genotype on plasma inflammatory biomarkers in the ROS/MAP (n=394) 

and ADNI 1 (n=520) subsamples. All two-sided P-values are >0.4 after within-sample Bonferroni correction for five 

comparisons. Plotted residuals on y-axes are from models co-varying for age, sex, clinical diagnosis, and APOE ε4 

status. 
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5.4.3 Postmortem Neuropathology and Microglial Activation (ROS/MAP)  

In the whole sample (n=1 015), rs6971 was not associated with macro or micro cerebral infarcts 

(all praw>0.1, see Figure 5-1). No main effects of rs6971 genotype were found for degree of CAA 

(n=897, additive Wald Χ
2

1=0.12, praw =0.73) (Figure 5-4).  Finally, we found no associations of 

rs6971 with either the density of active microglia at any stage of activation, nor the ratio of 

highly active microglia to relatively inactive microglia, in any region tested (all praw>0.05, see 

Figure 5-5). Interaction analyses revealed no interactions of rs6971 and APOE ε4 status on any 

postmortem pathological measure (all praw>0.1).  

 

 

Figure 5-4. Null association of TSPO rs6971 genotype with severity of CAA in the ROS/MAP post-mortem dataset 

(n=1 015). Data shown are raw proportions of subjects in each genotype group with varying degrees of CAA 

severity. CAA = cerebral amyloid angiopathy. 
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Figure 5-5. Null associations of TSPO rs6971 genotype with microglial activation in a subset of the ROS/MAP 

post-mortem dataset (n=209). All two-sided P-values are equal to 1 after Bonferroni correction for eight 

comparisons. Ratios in four bottom plots were transformed using square root transformations. 

 

5.5 Discussion 

Our study is the first to analyze variation in TSPO (rs6971) with respect to imaging and plasma 

biomarkers related to neuroinflammation in both Alzheimer’s disease patients and cognitively 

normal elderly subjects. To our knowledge, we are also the first to analyze the effect of rs6971 

on microglial activation and postmortem neuropathology. In a large sample of postmortem brains 

from elderly subjects, we found no significant effects of TSPO genotype with respect to 

postmortem or in vivo cerebral infarcts (Figure 5-1). While we found a marginally protective 

effect (0.5<p<0.1) of genotype on in vivo WMH burden (ADNI 1), this finding did not replicate 

in either of two independent samples (ADNI GO and 2, ROS/MAP) (Figure 5-2). Further, we 

found diagnosis-dependent effects of TSPO genotype on plasma levels of TNFα (ADNI 1) that 
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did not replicate in an independent sample (ROS/MAP). We found no significant association of 

TSPO genotype with either degree of cerebral amyloid angiopathy or microglial activation in 

postmortem tissue (Figures 5-4 and 5-5). Exploratory analyses found a potential interaction of 

TSPO and APOE genotypes, finding that APOE ε4 status may modulate an effect of TSPO 

genotype on macro cerebral infarcts. 

Our hypothesis specified that genotype-driven alterations in TSPO structure may influence its 

downstream neuroprotective action (Ferzaz et al., 2002; Girard et al., 2008; Ryu et al., 2005; 

Veiga et al., 2005), thereby conferring early and enduring risk across the lifespan for 

atherosclerotic damage, SVD, and potentially inflammatory dysregulation. The observed trend 

effects of TSPO genotype on vascular phenotypes (as well as amyloid angiopathy) were most 

prominent in the CN subgroups of both samples; this suggests that the effects of TSPO variation 

may be dependent on the time course of illness, with the greatest genotype differences observed 

in pre-symptomatic or early stage AD subjects. Interestingly, the HAB subjects appeared to be 

marginally protected from micro infarcts in the ROS/MAP sample, there was no observed effect 

of genotype on CAA. While association between micro infarcts and severe CAA has been 

previously shown (Soontornniyomkij et al., 2010), it is possible that the level of neuropathology 

across diagnostic groups in the ROS/MAP sample is not high enough to observe a similar pattern 

of TSPO effect for CAA as micro infarcts; the results are unaffected by co-varying for CAA. 

Due to uniquely resilient characteristics of the ROS/MAP sample (ROS study consisting 

exclusively of priests, nuns and brothers with well-documented healthy lifestyles and greater 

than average lifespan (Negash et al., 2011)), it may be that protective environmental factors 

associated with lifestyle have facilitated efficient amyloid clearance, but have not influenced 

amyloid-independent inflammatory processes associated with micro infarction to the same 

degree.  Also, a recent review analyzed studies of in vivo neuroinflammation and amyloid 

deposition, as measured by PET, and found no correlation between individual levels of 

inflammation and amyloid (Hommet et al., 2014).  

In our ADNI 1 analysis of inflammatory biomarkers, we found diagnosis-dependent effects of 

TSPO genotype on peripheral levels of TNFα, whereby HABs had higher levels if they were also 

diagnosed with AD. TNFα is generally regarded as a potent “traditional” pro-inflammatory 

cytokine associated with the innate immune response, but recent evidence suggests that TNFα 

may have regulatory roles in a diverse set of processes within the central nervous system 
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including cell viability, synaptic plasticity, and learning and memory (Frankola, Greig, Luo, & 

Tweedie, 2011; Olmos & Llado, 2014). This finding, however, was not successfully replicated in 

a second independent group of subjects, suggesting that the association is likely null. This lack of 

association is further supported by our negative observations for the other four biomarkers 

analyzed, including CRP.  

In line with our primarily null findings, the existing literature on TSPO function is somewhat 

equivocal. Our results align with a very recent investigation of TSPO genotype effects on in vivo 

amyloid and cognition in the ADNI cohort (Fan et al., 2015), which found no differences 

between HAB, MAB, and LAB subjects across or within diagnostic subgroups separately. At the 

molecular level, the role of TSPO in steroidogenesis has recently been called into question 

(Stocco, 2014) following two studies: one showing that testicular production of testosterone was 

unaltered in a conditional TSPO knockout mouse (Morohaku et al., 2014), and the other showing 

that the global knockout mouse was viable (contrary to previous reports (Papadopoulos et al., 

1997)) and showed no differences in expression of genes related to steroidogensis (Tu et al., 

2014). It could be argued, however, that these studies do not preclude the possibility that when 

present, different forms of TSPO (perhaps resulting from genetic variation) may function in 

potentially divergent ways. To test this directly in the context of immune system activation, we 

examined the effect of genotype on microglial activation in human postmortem brain tissue, 

finding no genotypic group differences in densities of active microglia or in the ratio of highly 

active to relatively inactive microglia. Importantly, these results suggest that the mechanism via 

which TSPO genotype may influence downstream pathology and disease risk (not just restricted 

to neurodegenerative disorders) does not involve the modulation of microglial activation. 

Importantly, the immune response is neither purely damaging nor protective. Both M1- and M2-

like microglial phenotypes (with pro- and anti-inflammatory roles, respectively (Mantovani, 

Biswas, Galdiero, Sica, & Locati, 2013; Prinz, Priller, Sisodia, & Ransohoff, 2011)), each with 

unique gene expression profiles (Butovsky et al., 2013), have been shown to have distinct and 

often opposing roles in disease (Goldmann & Prinz, 2013; Saijo & Glass, 2011).  For example, it 

has been observed that both pro- and anti-inflammatory cytokines expressed by activated 

microglia have divergent effects on amyloid production and cell death in the hippocampus 

(Chakrabarty et al., 2011). The microglial response in mice is different at different ages 

(characterized by significant changes in expression profiles) (Crain, Nikodemova, & Watters, 



www.manaraa.com

122 

 

2013), demonstrating how a changing physiological environment can influence the response of 

identical stimuli to result in both M1- and M2-like microglial responses. Given that we did not 

quantify the relative densities of M1- and M2-like microglia in our brain tissue samples, it is 

possible that a genotype effect on either specific cellular phenotype may have been missed. 

There are several additional limitations to this study. First, while efforts were made to ensure 

genotype groups were matched for important socio-demographic factors, potential confounding 

effects of unaccounted for subclinical pathology or other environmental factors cannot be ruled 

out. Second, population stratification due to ethnic diversity is a concern in any genetic analysis 

and must be considered as a potential confounder in our study. The observed MAFs for TSPO 

rs6971 in the ROS/MAP and ADNI samples were 0.32 and 0.31, respectively, consistent with 

observations in other Caucasian populations (HapMap-CEU MAF=0.29 

(http://hapmap.ncbi.nlm.nih.gov/cgi-

perl/snp_details_phase3?name=rs6971&source=hapmap28_B36&tmpl=snp_details_phase3)). 

The similarity of our genotype frequencies with those observed in large, homogenous population 

studies should serve to reduce concerns over ethnic heterogeneity within samples. Third, while 

we believe that some inference can be made as to the temporal pattern of genotype effect in our 

samples based on current diagnosis, we are aware of the correlational nature of cross-sectional, 

observational studies and are unable to infer causation regarding TSPO variation and 

Alzheimer’s disease risk phenotypes. Fourth, we recognize that the literature shows discordance 

between patterns of inflammatory biomarkers measured in serum vs. CSF (Swardfager et al., 

2010), and thus our results (obtained from plasma aliquots) may not rule out brain-specific 

inflammation. Finally, study design differences between ADNI and ROS/MAP, particularly in 

sample recruitment and data collection, should be acknowledged when considering our findings. 

While inter-study variability in image processing pipelines (for WMHv) and plasma protein 

quantification methods could potentially drive discordance between sample results, the fact that 

we found no significant effects of genotype in either sample (other than for plasma TNFα in 

ADNI Alzheimer’s disease subjects only) should alleviate concerns regarding false negatives. 

In conclusion, our results find no evidence for genetic variation in TSPO as a cerebrovascular 

and inflammatory risk factor related to neurodegeneration. In particular, the observed null effects 

of rs6971 on levels of microglial density across brain regions suggest that TSPO structural 

differences due to genotype likely do not interact with endogenous ligands in a manner that 
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influences microglial activation.  Our findings echo the recent discordance between functional 

studies of TSPO that have brought about controversy regarding its importance in embryonic 

development, steroidogenesis, and mitochondrial permeability (Li, Liu, Garavito, & Ferguson-

Miller, 2015). While we provide the first insight into the potential effects of rs6971 variation on 

structural imaging and postmortem brain pathology in humans, continued in vitro and animal 

model experiments of differential TSPO binding would be required to verify the pathway-level 

impact of this variation with respect to Alzheimer’s disease etiopathology.  
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Chapter 6  

6 Genetic Interaction between SORL1 and BDNF 
Regulates Isoform-Specific SORL1 Expression and 
Brain Amyloid 
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6.1 Abstract 

Background: Variants within the sortilin-like receptor (SORL1) gene are replicated at genome-

wide significance for Alzheimer’s disease (AD) risk; however, their mechanisms of effect are 

largely unknown. SORL1 acts within both amyloidogenic and vascular pathways, but its mRNA 

is also upregulated by the brain-derived neurotrophic factor (BDNF), in a SORL1 genotype-

dependent manner. The BDNF Val66Met variant affects the cellular secretion of BDNF and may 

therefore interact with SORL1 genotypes to influence SORL1 expression and downstream AD-

related phenotypes. Importantly, SORL1 transcript isoforms may be preferentially affected by 

these interactions and play unique roles in AD-related brain changes. 

Methods: This study included data from n=608 subjects from the Religious Orders 

Study/Memory and Aging Project (ROS/MAP), and n=1 285 subjects from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI phases 1, GO, and 2). In the ROS/MAP sample, 10 

SORL1 transcripts were quantified as expressed vs. not expressed in prefrontal cortex of 441 

postmortem brain samples using RNA-sequencing. For all transcripts, the interaction between 

each common SNP within 10kb of the SORL1 locus and BDNF Val66Met was tested using 

logistic regression. Interactions showing significance at p<0.05 after locus-wide multiple testing 

correction were carried forward for further analyses on in vivo amyloid (measured with 

[18F]Florbetapir PET) in ADNI (n=710), entorhinal cortex volume in ROS/MAP (n=172) and 

ADNI (n=1 285), and white matter tract fractional anisotropy in ADNI 2 (n=185). 

Results: In the ROS/MAP sample isoform expression analyses, 36 tests survived correction for 

multiple testing. All 36 models were for the same transcript, SORL1-005, a putative truncated 

protein-coding transcript of 1 124 amino acids, and all SNPs were in high LD (top SNP 

rs12364988, p=1.25x10
-5

). The rs12364988
T
 allele reduced likelihood of SORL1-005 expression 

in the BDNF
Val

 homozygotes, but greatly increased likelihood of expression among BDNF
Met

 

carriers. This effect was driven entirely by a subsample of non-pathological AD subjects 

(n=179). Further, increased SORL1-005 was weakly associated with increased midfrontal diffuse 

plaque pathology in the ROS/MAP sample (F1,431=4.07, p=0.044). In the ADNI [18F]Florbetapir 

PET imaging sample (n=710), SORL1-BDNF interactions from expression analyses also 

significantly influenced Aβ load in multiple frontal ROIs (top SNP rs618874, F1,649=12.12, 

p=5.3x10
-4

) such that genotype groups more likely to express SORL1-005 also showed higher 
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Aβ. Finally, SORL1-BDNF interactions also influenced entorhinal cortex volumes in ROS/MAP 

(F1,161=6.64 ,p=0.011, n=172) and ADNI (F1,1268=4.69, p=0.031, n=1 235), as well as white 

matter fractional anisotropy in ADNI 2 (F1,172=6.44, p=0.012, n=185), though all at sub-threshold 

significance. 

Conclusions: Our findings point toward a novel interaction between SORL1 and BDNF variants 

that may be important for regulating isoform-specific SORL1 expression in non-AD subjects. 

The top interacting SORL1 SNP found in locus-wide analyses, rs12364988, is part of the same 

haplotype block recently found to determine BDNF-dependent upregulation of SORL1 mRNA in 

neurons derived from human induced pluripotent stem cells. SORL1-BDNF genetic interactions 

also predicted differences in diffuse plaques postmortem and total in vivo amyloid burden, as 

well as AD-vulnerable brain structure across two independent samples. The effects of this gene-

gene interaction suggest a possible mechanistic role of the SORL1-005 transcript in brain 

changes related to non-pathological aging, and may help bridge the gap between AD risk 

processes and those associated with resilience in healthy aging. 
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6.2 Introduction 

Variants within the sortilin-related receptor (SORL1, SORLA, LR11) gene are among the most 

highly-replicated genetic risk factors for late-onset Alzheimer’s disease (AD); they have been 

associated with AD diagnosis in candidate studies (Rogaeva et al., 2007), independent genome-

wide association studies (Lambert et al., 2013; Miyashita et al., 2013), and meta-analyses 

(Lambert et al., 2013; Reitz et al., 2011). SORL1 plays important roles in amyloid processing 

and trafficking, functioning to recycle APP to the neuronal membrane (Andersen et al., 2005) as 

well as to directly target Aβ toward lysosomal cellular compartments (Caglayan et al., 2014). 

While some studies have implicated SORL1 genotypes independently in gene expression 

(Caglayan et al., 2012, p. 1; McCarthy et al., 2012), the transcriptional control of SORL1 likely 

depends on extragenous factors, particularly levels of the brain-derived neurotrophic factor 

(BDNF) (Rohe et al., 2009), as well as SORL1 genotype. Accordingly, it was recently shown that 

BDNF administration in iPSC-derived neuron cultures up-regulate SORL1 expression in a 

SORL1-genotype dependent manner (Young et al., 2015). Studying the interaction of functional 

BDNF and SORL1 genotypes in large, well-characterized samples may provide more insight into 

the nature of this transcriptional regulatory mechanism and risk vs. resilience mechanisms for 

AD. 

The BDNF Val66Met polymorphism determines the activity-dependent secretion of BDNF 

(Egan et al., 2003), with Met<Val, and also the function of the BDNF pro-peptide in facilitating 

hippocampal long-term depression (LTD) (Mizui et al., 2015), with the Met allele significantly 

diminishing LTD. In this way, BDNF Val66Met may serve as a functional assay for BDNF 

activity in the brain. We and others have demonstrated effects of BDNF Val66Met on brain 

structure (Toro et al., 2009; Voineskos et al., 2011; C. Wang et al., 2014), function (Cárdenas-

Morales, Grön, Sim, Stingl, & Kammer, 2014; Lisiecka et al., 2015), and cognition (Dincheva et 

al., 2012; S. E. Harris et al., 2006), related to risk for AD. In addition, we have shown effects of 

BDNF Val66Met on temporal white matter tract integrity as measured with diffusion tensor 

imaging (Voineskos et al., 2011), which is highly predictive of conversion from cognitively 

normal (CN) to amnestic mild cognitive impairment (MCI) (Zhuang et al., 2012). These effects 

may be downstream consequences of BDNF’s stimulation of SORL1 activity (Rohe et al., 2013), 
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and therefore may be subject to modulation by both BDNF and SORL1 genotypes 

interdependently. 

We have previously shown a main effect of SORL1 genotype on levels of prefrontal SORL1 

mRNA in postmortem brain at early stages of the human lifespan (Felsky et al., 2014), however, 

the microarray technology used in that study was unable to capture transcript diversity, and 

previous reports have shown differential SORL1 isoform expression both in AD (Grear et al., 

2009, p. 1) and as a result of SORL1 genotype (Caglayan et al., 2012). The SORL1 gene contains 

44 exons and the ensembl database (http://useast.ensembl.org) currently lists 13 distinct SORL1 

transcripts. RNA-sequencing (RNA-seq) technology offers distinct advantages over probe-based 

methodologies as it allows for the alignment of assembled transcript reads to any sequence 

template and the estimation of isoform expression based on these reads. We have also previously 

shown age-dependent effects of the BDNF Val66Met polymorphism on white matter 

microstructure, cortical thickness, and episodic memory performance in healthy adults 

(Voineskos et al., 2011), suggesting that as-of-yet unidentified factors may act to influence 

BDNF’s protective effects on neurodegeneration and cognitive aging. 

Given the regulatory interaction of BDNF protein with SORL1 genotype in human iPSC-derived 

neurons (Young et al., 2015), we hypothesized that common SORL1 gene variants may interact 

with BDNF Val66Met to influence the expression of SORL1 transcripts. Further, given the 

functions of SORL1 within the amyloidogenic cascade, we hypothesized that SNP-SNP 

interactions predicting altered SORL1 expression may affect amyloid neuropathology as well as 

brain structures at risk in the early stages of AD, such as entorhinal cortex (Bobinski et al., 1999; 

Gómez-Isla et al., 1996; J. L. Price et al., 2001) and fronto-temporal white matter (Selnes et al., 

2013; Zhuang et al., 2012). To test this, we performed an unbiased locus-wide gene-gene 

interaction analysis of SORL1 SNPs with BDNF Val66Met to model the expression of 10 SORL1 

transcripts, identified by RNA-seq of postmortem prefrontal cortex tissue, in a large sample 

(n=441) of subjects from the Religious Orders Study and Memory and Aging Project 

(ROS/MAP). Transcripts showing significant evidence for regulation by SORL1-BDNF 

interactions were then tested for effects on postmortem frontal lobe amyloid deposition in 

ROS/MAP. We then tested significant SNP-SNP interactions for effects on in vivo frontal 

amyloid load, as measured by [18F]Florbetapir PET, in 710 subjects from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI). Finally, to explore potential downstream effects of 
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these SNP-SNP interactions on brain structure, we examined 1 285 subjects from ROS/MAP and 

172 subjects from ADNI with MRI estimates of entorhinal cortex volume, and 185 subjects from 

ADNI 2 with diffusion tensor imaging (DTI) data for tracts implicated in AD. 

 

6.3 Methods 

6.3.1 Religious Orders Study and Memory and Aging Project 
(ROS/MAP) 

6.3.1.1 Study Participants 

A total of 441 subjects with genomic, RNA sequencing, and neuropathological data were 

included in the present study. All participants were from the Religious Orders Study (ROS) 

(Bennett, Schneider, Arvanitakis, et al., 2012) and Memory and Aging Project (MAP) (Bennett, 

Schneider, Arvanitakis, et al., 2012); two large ongoing cohort studies based out of the Rush 

Alzheimer’s Disease Center at Rush University in Chicago, IL. ROS began in 1994 recruiting 

brothers, nuns, and priests over the age of 53 – all healthy at time of study entry – requiring 

longitudinal clinical, cognitive and biometric assessments, as well as agreement to donate brain 

for autopsy at time of death. MAP began in 1998 according to the same study design, but with a 

more general target population for sampling; subjects aged 55 and over were recruited from the 

general elderly population of the Chicago area, rather than exclusively from members of clergy. 

All subjects were assessed with a comprehensive decision tree algorithm as well as a uniform, 

structured, clinical evaluation that included a self-report medical history obtained by trained 

nurses and research technicians, a neurologic examination by trained nurses and cognitive 

function testing by trained neuropsychological test technicians. Both studies were approved by 

the Institutional Review Board of Rush University Medical Center and enroll older persons 

without dementia who agree to annual evaluation and autopsy. The follow-up rates for both 

studies exceed 90% and autopsy rates exceed 80%.   
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6.3.1.2 Genetics 

Genotyping of all subjects was performed using the Affymetrix (Santa Clara, CA, USA) 

Genechip 6.0 platform. APOE (rs7412 and rs429358) genotypes were imputed from MACH 

(version 1.0.16a) and HapMap release 22 CEU (build 36), as previously described (Chibnik et 

al., 2011). Common variants within 10kb of the SORL1 locus (chromosome 11, position 121 312 

912 - 121 514 471, GRCh37 coordinates) were extracted using PLINK (v1.90b). A total of 327 

high confidence imputed SNPs in this region were pruned for minor allele frequency (MAF>0.1) 

and Hardy-Weinberg Equilibrium (HWE p>0.001), resulting in a final set of 160 variants for 

analysis. Pairwise linkage was assessed in this set of 160 SNPs to determine the number of 

independent tests locus-wide, as outlined in Statistical Analysis (6.3.3). 

 

6.3.1.3 Postmortem SORL1 Isoform Expression 

RNA-Seq expression data were generated from frozen dorsolateral prefrontal cortex tissues 

following the construction of complementary DNA libraries, as previously published (Yu, 

Chibnik, et al., 2015). Briefly, RNA was extracted using Qiagen's miRNeasey mini kit and the 

RNase free DNase Set. Samples were quantified by Nanodrop and quality evaluated by Agilent 

Bioanalyzer. RNA-Seq library was prepared on Broad Institute’s Genomics Platform using 

strand specific dUTP method (Levin et al., 2010) with poly-A selection (Adiconis et al., 2013). 

Samples were sequenced using the Illumina HiSeq platform to a depth of 50 million paired-end 

reads of 101 bp each. The paired-end reads were then mapped to SORL1 isoforms using the 

Ensemble human genome transcriptomic database (http://www.ensembl.org). Expression 

abundance was calculated as fragments per kilobase of exon per million reads mapped (FPKM). 

 

6.3.1.4 Postmortem Neuropathology 

A board-certified neuropathologist blinded to age and all clinical data established 

neuropathologic diagnoses for each subject based on scores from NIA-Reagan (NIA-Reagan, 

1997), Braak (H. Braak & Braak, 1995), and CERAD (Mirra et al., 1991) classifications. Aβ and 

abnormal tau deposition in the frontal cortex was quanitified using immunohistochemistry and 
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automated image processing for total amyloid and paired helical filament (PHF) tau in superior 

frontal cortex, and a modified Bielschowsky silver staining technique for neuritic and diffuse 

plaques, and neurofibrillary tangles (NFT) in midfrontal cortex, according to previously 

published methods (Bennett, Wilson, Boyle, et al., 2012). Quantitative scores for Aβ and PHFtau 

deposition (percent area occupied) and neuritic and diffuse plaques and NFTs (density by 

number/mm
2
 in region with highest density) were computed separately and square root-

transformed before analysis, as in previous analyses of this dataset (Bradshaw et al., 2013; Yu, 

Chibnik, et al., 2015).  

 

6.3.1.5 In Vivo Structural MRI 

A subset of n=172 ROS/MAP subjects underwent structural neuroimaging protocols (overlap of 

n=5 with subjects from expression dataset). High-resolution T1-weighted anatomical scans were 

obtained using a 3D magnetization-prepared rapid acquisition gradient-echo (MPRAGE) 

sequence (echo-time (TE)=2.8 msec, repetition time (TR)=6.3 msec, preparation time=1000 

msec, flip-angle=8°, field-of-view (FOV)=24 cm × 24 cm, 160 sagittal slices, slice thickness=1 

mm, no gap, 224×192 image matrix reconstructed to 256×256, and two repetitions) (Arfanakis et 

al., 2013). Estimates of entorhinal cortex and whole brain volume (mm
3
) were made using the 

open-sourced Freesurfer software package (http://surfer.nmr.mgh.harvard.edu). 

 

6.3.2 Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

6.3.2.1 Study Participants 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multi-center collaboration 

established in 2003, in which elderly subjects at various stages of cognitive impairment are 

assessed longitudinally for multi-modal imaging and other AD-related biomarkers. All subjects 

are administered clinical evaluations at time of study enrollment by trained physicians as 

previously described (Petersen et al., 2010). Complete details regarding study protocols, 

inclusion/exclusion criteria, and data collection and availability can be found at http://www.adni-

info.org. All participants provided written informed consent, and each site’s institutional review 
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board approved study protocols. ADNI was conducted in three phases (ADNI 1, GO, and 2), for 

which different study protocols were implemented; therefore, total sample sizes vary depending 

on phenotype. For the present study, a total of 1 285 subjects from ADNI 1, GO, and 2 (CN, 

EMCI, SMC, LMCI, and AD) had genomic and baseline structural brain imaging data for the 

entorhinal cortex available. For analyses of in vivo Aβ pathology, a subset of 710 subjects from 

ADNI 2 had genomic and baseline Aβ [
18

F]Florbetapir PET imaging data available.  

 

6.3.2.2 Genetics 

All ADNI 1 subjects were genotyped using the Quad 610 BeadChip (Illumina Inc., San Diego, 

CA), and ADNI 2 subjects were genotyped using the HumanOmniExpress BeadChip  (Illumina 

Inc., San Diego, CA). Genetic quality control was conducted using PLINK (v1.90b). After 

aligning the genetic data to the human assembly GRCh37/hg19 using UCSC’s liftOver tool2, 

haplotypes were prephased using SHAPEIT3 v2.r790, and imputation was performed using 

IMPUTE2 (v2.3.1), with the 1000 Genomes Phase1 integrated haplotypes as the reference panel. 

All SNPs with an IMPUTE2 info score of less than 0.5 were excluded from further analyses. 

Additionally, SNPs with HWE p <0.001, and MAF <0.01 were excluded from further analyses. 

All 160 SORL1 SNPs derived from ROS/MAP preprocessing - as well as BDNF Val66Met - 

were imputed with high confidence in the ADNI 1, GO, and 2 samples and available for 

analyses. 

 

6.3.2.3 In Vivo Structural MRI and DTI 

A total of 1 285 subjects from ADNI 1, 2, and GO underwent structural MRI protocols to 

generate estimates of entorhinal cortex volume. High resolution T1-weighted volumetric 

magnetization prepared rapid gradient echo sequences were acquired in the sagittal orientation. 

A proton density/T2-weighted fast spin echo sequence was acquired in the axial orientation. Sites 

included in the ADNI protocol were required to pass rigorous scanner validation tests and scan 

acquisitions for each subject included a fluid-filled phantom. Validation procedures have been 
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previously documented (Clifford R. Jack et al., 2008). Entorhinal cortex and total intracranial 

volumes were estimated for each subject using FreeSurfer software (v4.3) (Fischl, 2012). 

Diffusion-weighted images (DWI) were acquired for a subset of 185 subjects from ADNI 2 

(256 × 256 matrix; voxel size: 2.7 × 2.7 × 2.7 mm
3
; TR=9000 ms; scan time=9 min). 46 separate 

images were acquired for each DTI scan: 5 T2-weighted images with no diffusion sensitization 

(B0 images) and 41 diffusion-weighted images (B=1000 s/mm
2
). This protocol was chosen to 

optimize the signal-to-noise ratio in a fixed scan time (Jahanshad et al., 2010), and all images 

were checked visually for quality assurance to exclude scans with excessive motion or other 

artifacts. To generate estimates of fractional anisotropy (FA) for specific white matter tracts, 

diffusion tensor volumes were first generated from eddy- and EPI-corrected DWI scans using 

dtifit (from FMRIB’s Software Library (Jenkinson et al., 2012)) and used to generate FA maps 

for each subject. The FA maps were registered to the John Hopkins University (JHU) DTI atlas 

(Mori et al., 2008) using a mutual information based elastic registration algorithm (Leow et al., 

2007). The resulting deformation fields were then applied to the JHU “Eve” white matter atlas 

labels, which were then used to mask specific white matter tracts and calculate average FA 

within each region of interest (ROI). Further details are described on the ADNI website 

(http://adni.bitbucket.org/docs/DTIROI/DTI-ADNI_Methods-Thompson-Oct2012.pdf). 

 

6.3.2.4 In Vivo Aβ [18F]Florbetapir PET 

Details of brain Aβ [
18

F]Florbetapir PET imaging and preprocessing in ADNI have been 

described elsewhere (Landau et al., 2013). Briefly, each subject’s structural T1-weighted MRI 

scan was co-registered to their [
18

F]Florbetapir scan using SPM5 

(http://www.fil.ion.ucl.ac.uk/spm). FreeSurfer (v4.5) (Fischl, 2012) was used to parcellate each 

T1-weighted scan into cortical subregions that were used to calculate [
18

F]Florbetapir means 

within ROIs. Signal from [
18

F]Florbetapir within cortical subregions were not standardized and 

so we co-varied for signal from a composite reference region comprised of cerebellum, 

brainstem/pons, and subcortical white matter in our analyses. Since RNA-sequencing in the 

ROS/MAP sample was performed on tissue from the prefrontal cortex, we maintained regional 

specificity by analyzing a set of frontal cortical ROIs averaged over the left and right 

hemispheres: lateral orbitofrontal, medial orbitofrontal, pars opercularis, pars orbitalis, pars 
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triangularis, rostral middle frontal, and superior frontal cortices. Further details are available on 

the ADNI website 

(http://adni.bitbucket.org/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_01.20.

15.pdf). 

 

6.3.3 Statistical Analysis 

Imputed genetic data were processed using PLINK (v1.90b) software (Purcell et al., 2007) and 

all regression analyses were performed using R (v3.1.1) statistical software (http://www.r-

project.org/) (R Core Team, 2014). Haploview (v4.2) (Barrett, Fry, Maller, & Daly, 2005) was 

used for calculations of linkage disequilibrium (LD) structure. Based on lack of expression, data 

for three out of 13 transcripts were unfit for analysis as outcome measures: SORL1-003, SORL1-

004, SORL1-007 (See Figure 6-2 for size and position of all transcripts).  All other transcripts 

showed heavily right-skewed FPKM distributions (skewness ranging from 0.71-5.3, all 

D’Agostino test (D’Agostino, 1970) p<1.3x10
-5

) - for several transcripts, a large portion of 

subjects showed zero expression - that could not be coerced to normal (using Box-Cox power 

transformations (Box & Cox, 1964)) and thus were evaluated as binary outcomes (expressed 

above 0 FPKM vs. 0 FPKM, or median split, where appropriate) using logistic regression. Each 

of 160 SNPs (MAF>0.1 and HWE p>0.001) within the SORL1 locus were tested for interaction 

with BDNF Val66Met, with each transcript as outcome using logistic regression, co-varying for 

APOE ε4 status, sequencing batch, age at death, sex, study (ROS vs. MAP), RNA integrity 

number (Schroeder et al., 2006), postmortem interval, ribosomal bases, and the first three 

principal components of the genotype co-variance matrix analyzed using EIGENSTRAT (A. L. 

Price et al., 2006). Additive genetic models were assumed for SORL1 variants and BDNF 

Val66Met genotypes were grouped according to a dominant model (BDNF
Val

 homozygotes vs. 

BDNF
Met

 carriers), due to the rarity of the homozygous BDNF
Met

 genotype (13/441 ROS/MAP 

subjects, 48/1 285 ADNI 1, GO, and 2 subjects). APOE ε4 was controlled for to help isolate the 

genetic effects of SORL1 and BDNF variants, given the strong impact of ε4 status on AD 

pathological and imaging phenotypes (discussed in Section 1.4.4). 
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Figure 6-1. Diagram of SORL1 transcripts and SORL1 protein domains (adapted from Ensembl database 

(http://www.ensembl.org), ENSG00000137642). All base pair positions are in GRCh38 assembly coordinates. 

Orange colour indicates merged Ensembl/Havana databse trasnscript, red indicates Ensemble protein coding 

transcript, and blue indicates non-protein coding transcripts. “Retained introns” are alternatively spliced transcripts 

that contain intronic sequence relative to other coding transcripts. “Processed transcripts” do not contain an open 

reading fram (ORF). VPS10 = vacuolar protein sorting 10; LDLR = low density lipoprotein receptor; TM = 

transmembrane.   

 

To correct for multiple testing and account for LD structure across the tested SNPs, we first 

calculated the effective number of independent SNPs across the SORL1 locus. This was 

accomplished by pruning imputed genotypes based on LD (window of 50 SNPs, a cutoff of 

r
2
=0.2, and a step of 5 SNPs); of the 160 SORL1 tested, six independent SNPs captured the 

haplotypic diversity at this locus (strong patterns of LD can be seen in Figure 6-1). Despite 

significant correlations observed between the expression levels of several of the ten SORL1 

transcripts analyzed, we treated each as an independent phenotype, resulting in a final 
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experiment-wise Bonferroni corrected significance threshold of p<8.33x10
-4

 (0.05 / 6 

independent SNPs / 10 transcripts). To ascertain region-specific effects on postmortem 

neuropathology (RNA sequencing was performed on tissue from prefrontal cortex), transcripts 

that showed significant evidence for interactive regulation by SORL1 variants and BDNF 

Val66Met were analyzed for effects mid-frontal neuritic plaques, diffuse plaques, and total 

amyloid in the ROS/MAP sample (n=440) using linear regression. Due to potential influence of 

RNA degradation on expression values, these analyses controlled for postmortem interval (PMI) 

and RIN, as well as age at death, sex, education, study (ROS vs. MAP), and APOE ε4 status. 

 

 

Figure 6-2. LD Structure of 160 SORL1 variants analyzed in the ROS/MAP Sample (n=441). The region of interest 

was defined as the SORL1 locus +/- 10kb (chr:11, pos. 121 452 203-121 633 693, GRCh38 coordinates). 

 

SNP-SNP interactions from expression analyses that remained significant after correction for 

multiple testing were carried forward into the ADNI 2 sample to test for effects on in vivo Aβ 

[18F]Florbetapir PET (n=710). To maintain regional specificity, average amyloid load across 

seven frontal cortical ROIs were analyzed as outcomes for each gene-gene interaction using 

linear regression, co-varying for age, sex, education, ethnicity, diagnosis, APOE ε4 status, 
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aggregate reference region signal, and ROI size. Interaction p-values were corrected for multiple 

testing using the FDR procedure (q=0.05) described by Benjamini and Hochberg (Benjamini & 

Hochberg, 1995).  

Finally, to examine potential downstream consequences of altered amyloid pathology, the same 

set of SNP-SNP interactions identified by expression analyses were explored for effects on brain 

structure known to be vulnerable in the earliest stages of AD. In ROS/MAP and ADNI, 

subsamples of n=172 and n=1 285, respectively, had entorhinal cortex volumes available at time 

of analysis. Cortical volume was evaluated as outcome of linear regression models including 

each interaction, co-varying for sex, age, education, clinical diagnosis, APOE ε4 status, total 

brain volume, and either study (ROS vs. MAP) or phase (ADNI 1 vs. GO vs.2). Additionally, a 

subset of n=185 subjects from ADNI 2 who underwent DTI had average FA values for five 

bilateral fronto-temporal-occipital and interhemispheric white matter tracts implicated in AD: 

sagittal stratum (SS), hippocampal segment of cingulum bundle (CBH), splenium of corpus 

callosum (SCC), inferior fronto-occipital fascuiculus (IFO), and superior longitunial fasciculus 

(SLF). FA for each tract and SNP-SNP interaction was tested using linear regression, co-varying 

for age, sex, race, clinical diagnosis, and APOE ε4 status. 

6.4 Results 

6.4.1 SORL1 Transcript Expression and Postmortem Neuropathology 

Sample demographics for ROS/MAP are summarized in Table 6-1. Out of 441 subjects included 

in the expression analyses, 262 had pathologically confirmed AD (59%). Of these 262 confirmed 

AD cases, 124 (47%) had a clinical diagnosis of AD, 62 (24%) had a diagnosis of MCI, 56 

(21%) were cognitively normal, and 20 (8%) had additional other diagnoses when last assessed 

before death. 

 

Table 6-1. ROS/MAP Sample Demographics 

ROS/MAP expression (n=441) Non-AD 

(n=179) 

PathoAD 

(n=179) 

Diff (p)
1
   

Sex (F/M) 107 F, 72 M 171 F, 91 M 0.027   
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Age at death (y(SD)) 86.6 (7.2) 89.8 (5.9) <0.0001   

Education (y(SD)) 16.3 (3.6) 16.6 (3.4) 0.47   

MMSE (SD) 25.1 (6.8) 19.1 (9.4) <0.0001   

RIN (SD) 7.2 (1.0) 7.1 (0.9) 0.21   

PMI (SD) 6.8 (4.1) 7.3 (5.4) 0.25   

APOE ε4 status (-/+) 153-, 26+ 
(15%+) 

168-, 94+ 
(36%+) 

<0.0001   

BDNF genotype (valval/met 

carrier) 

116Val, 63M 170Val, 92M 1   

ROS/MAP MRI (n=172) CN (n=112) MCI (n=41) AD 

(n=13) 

Other
2
 

(n=6) 

Diff (p)
1
 

Sex (F/M) 81 F, 31 M 30 F, 11 M 12 F, 1 M 3 F, 3 M 0.25 

Age at scan (y(SD)) 83.3 (6.7) 85.3 (5.1) 85.8 (3.8) 86 (2.8) 0.072 

Education (y(SD)) 15.6 (3.3) 15.22 (3.1) 15.9 (2.4) 14.7 (2.4) 0.82 

MMSE (SD) 28.3 (1.5) 26.9 (2.1) 19.2 (6) 22.7 (4.5) <0.0001 

APOE ε4 status (-/+) 95-/17+ 

(15%+) 

29-/12+ 

(29%+) 

8-/5+ 

(38%+) 

5-/1+ 

(17%+) 

0.084 

BDNF genotype (valval/met 

carrier) 

77/35 29/12 7/6 4/2 0.81 

Note: 1p-values are two-sided and derived from Fisher’s exact test (for sex, APOE ε4 status, and BDNF genotype) 

and either two-sample t-tests (in expression dataset for age at death, education, MMSE, RIN, and PMI) or ANOVA 

(in imaging dataset for age at scan, education, and MMSE). ROS/MAP = Religious Orders Study / Memory and 

Aging Project; CN = cognitively normal; non-AD = non-neuropathologically-confirmed Alzheimer’s disease; 

pathoAD = neuropathologically-confirmed Alzheimer’s disease; MMSE = Mini Mental Status Exam score at last 

visit before death; Val = Val/Val homozygotes; Met = Met allele carriers; F = female; M = male; y = years; SD = 

standard deviation; R = right; L = left. 

 

Out of a total 1 600 tests (160 SNPs x 10 SORL1 transcripts), 36 remained significant after 

correction for multiple testing (threshold of p<8.33x10
-4

); all 36 modeled the same transcript, 

SORL1-005 (ENST00000534286), as the outcome (Figure 6-3 shows locus-wide interaction P-
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values for SORL1-005 expression in the whole sample (n=441)). The SNP showing strongest 

interaction effect was rs12364988 (Wald X
2

1=19.09, p=1.25x10
-5

, n=441), where the 

rs12364988
T
 allele reduced likelihood of SORL1-005 expression in the BDNF

Val
 homozygotes 

(ORTT:CC=0.38, C.I.95%=[0.18,0.80]), but greatly increased likelihood of expression among 

BDNF
Met

 carriers (ORTT:CC=7.03, C.I.95%=[2.42,20.46]) (see Figure 6-4A). Rs12364988, within 

the 5’ region of SORL1, was in moderate to strong LD with the remaining 35 SNPs that showed 

significant interaction with BDNF Val66Met in the ROS/MAP sample (D’ range=0.80-1, r
2
 

range=0.35-1, n=441). The region encompassed by these SNPs, stretching approximately 53kb 

from rs11218301 to rs1784927, includes two haplotype blocks (defined by Gabriel et al., 2002), 

and, due to LD structure, can be tagged by only three effectively independent SNPs.  

 

 

Figure 6-3. –Log(P-values) for interaction terms of SNPs across the SORL1 locus with BDNF Val66Met in logistic 

regression models for expression of SORL1-005 (ENST00000534286). The top interacting SNP was rs12364988 

(Wald X2
1=19.09, p=1.25x10-5, n=441). Colour coding shows LD structure in the region (according to 1000 

Genomes hg19 EUR reference), with red indicating high LD (r2>0.8) and dark blue indicating low LD (r2<0.2) with 

respect to rs12364988. Plot was generated using LocusZoom (Pruim et al., 2010). 
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Figure 6-4. Top interaction effects of SORL1 variants (rs12364988 and rs676759) and BDNF Val66Met on 

prefrontal mRNA expression of SORL1-005 (ENST00000534286) in A) the whole ROS/MAP sample (Wald 

X2
1=19.09, p=1.25x10-5, n=441), B) only non-pathologically confirmed AD (non-pathoAD) subjects (Wald 

X2
1=19.27, p=1.14x10-5, n=179), and C) pathologically confirmed AD (pathoAD) subjects (Wald X2

1=1.99, p=0.16, 

n=262). 

 

Since all interactions showed regulatory effects on the same transcript, SORL1-005, three tests 

were performed to evaluate the effect of SORL1-005 expression on mid-frontal neuritic plaques, 

diffuse plaques, total amyloid, PHFtau, and NFTs in ROS/MAP. In the whole sample, when 

pathology and expression were evaluated as continuous traits, there was an effect of SORL1-005 

on diffuse plaques only, whereby increased levels of SORL1-005 were associated with increased 

number of plaques SORL1-005 (F1,431=4.07, p=0.044, n=441). No effects were observed for 

PHFtau or NFT count (all praw>0.05). Since both SORL1-005 expression and diffuse plaque 

pathology levels were heavily skewed (with many subject showing no expression and/or no 

pathology), a secondary analysis was performed using logistic regression, with SORL1-005 and 

diffuse plaques both coded as binary variables (SORL1 expressed vs. not expressed; diffuse 

plaque pathology above and below third quartile); the effect was preserved (Wald X
2

1=4.42, 

p=0.036), however, neither result survived correction for multiple testing. 



www.manaraa.com

142 

 

Post-hoc tests in diagnostic subgroups revealed strongly divergent patterns of effect between 

non-AD and pathologically-confirmed AD subjects. In the non-AD subgroup (n=179), 44 tests 

showed interaction p-values below the assigned Bonferroni threshold for multiple testing 

(P<8.33x10
-4

). As in the overall sample, all significant models predicted SORL1-005 expression 

as outcome, though with much stronger effect sizes observed for the top interacting SORL1 SNP 

(rs676759, Wald X
2

1=19.27, p=1.14x10
-5

)  in the BDNF
Val

 homozygote (ORCC:TT=0.093, 

C.I.95%=[0.026,0.34]) and BDNF
Met

 carrier groups (ORCC:TT=23.12, C.I.95%=[3.04,175.36]) (see 

Figure 6-4B). Rs12364988 was also among the 44 variants showing significant interaction 

effects on expression in this subsample (Wald X
2

1=19.09, p=1.24x10
-5

). In the pathologically-

confirmed AD subset (n=262), no test survived correction for multiple testing (for rs676759, 

interaction p=0.16, see Figure 6-4C), suggesting that the interaction effect is specific to 

individuals without confirmed AD. In agreement, the effect of SORL1-005 expression on 

postmortem diffuse plaque neuropathology persisted in the non-AD subjects (F1,169=3.97, 

p=0.048), but was absent in pathologically-confirmed AD subjects (F1,253=2.29, p=0.37). 

 

6.4.2 In Vivo Aβ [18F]Florbetapir PET 

Sample demographics for ADNI subjects are summarized in Table 6-2. A total of 36 SNP-SNP 

interactions surviving correction for multiple testing in the expression analyses were analyzed 

across seven bilateral frontal cortical ROIs for in vivo Aβ, resulting in a total of 252 tests. After 

FDR correction, 44 models remained significant. Between these 44 models, 18 different SORL1 

SNPs demonstrated significant interaction with BDNF Val66Met to predict levels of frontal Aβ 

across five ROIs (out of all significant outcomes (44): lateral orbitofrontal (1), medial 

orbitofrontal (2), pars opercularis (17), pars orbitalis (7), and pars triangularis (17)). The top SNP 

showing interaction was rs618874 (F1,649=12.12, praw=5.3x10
-4

, n=710);  the rs618874
T
 allele 

was associated with decreased amyloid burden in BDNF
Val

 homozygotes, but increased amyloid 

in BDNF
Met

 carriers (see Figure 6-5). This is in alignment with effects observed on expression 

and neuropathology in ROS/MAP, whereby the rs12364988
T
 allele, which is strongly linked to 

the rs618874
T
 allele (ADNI r

2
=0.73; ROS/MAP r

2
=0.74), resulted in BDNF

Met
-dependent 

increases in truncated SORL1-005 transcript, which in turn was associated with increased 

postmortem diffuse amyloid plaques. To test for effects of potential data outliers, we re-
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performed all regressions removing observations lying beyond 1.5 times the interquartile range 

of mean binding for each ROI. In these analyses, between two and seven subjects were removed 

from each model; however, statistical significance of our findings were not meaningfully altered. 

In fact, 52 models remain significant after outlier removal. 

 

Table 6-2. ADNI  Sample Demographics 

ADNI 1/GO/2 MRI 

(n=1 285) 

CN (n=335) SMC 

(n=82) 

EMCI (n=235) LMCI 

(n=407) 

AD 

(n=226) 

Diff (p)
1
 

Study phase (1, GO, 2) 193 (1), 142 

(2) 

82 (2) 111 (GO), 124 

(2) 

291 (1), 116 

(2) 

131 (1), 95 

(2) 

<0.0001 

Sex (F/M) 159 F, 176 

M 

51 F, 31 M 101 F, 134 M 155 F, 252 M 102 F, 124 

M 

0.0012 

Age (y(SD)) 74.7 (5.4) 71.7 (5.4) 71.0 (7.1) 73.3 (7.4) 74.3 (8.1) <0.0001 

Education (y(SD)) 16.2 (2.7) 16.7 (2.6) 16.1 (2.6) 15.8 (2.9) 15.2 (2.9) <0.0001 

MMSE (SD) 29 (1.1) 29 (1.2) 28.4 (1.6) 27.1 (1.8) 23.1 (2.1) <0.0001 

APOE ε4 status (-/+) 251-/84+ 

(25%+) 

53-/29+ 

(35%+) 

132-/103+ 

(44%+) 

175-/232+ 

(57%+) 

68-/158+ 

(70%+) 

<0.0001 

BDNF genotype 

(valval/met carrier) 

231/104 54/28 159/76 271/136 154/72 0.96 

ADNI GO/2 Amyloid 

Sample (n=710) 

CN (n=136) SMC 

(n=88) 

EMCI (n=244) LMCI 

(n=121) 

AD 

(n=121) 

Diff (p)
1
 

Study phase (GO, 2) 136 (2) 88 (2) 106 (GO), 138 

(2) 

121 (2) 121 (2) <0.0001 

Sex (F/M) 66 F, 70 M 55 F, 33 M 107 F, 137 M 55 F, 66 M 50 F, 71 M 0.024 

Age (y(SD)) 73.9 (5.9) 72.2 (5.8) 71.4 (7.4) 72.5 (7.5) 74.3 (8.5) 0.001 

Education (y(SD)) 16.5 (2.5) 16.8 (2.6) 16 (2.6) 16.5 (2.6) 15.8 (2.6) 0.016 

MMSE (SD) 29.1 (1.2) 29 (1.3) 28.3 (1.6) 27.7 (1.8) 23.1 (2.1) <0.0001 

APOE ε4 status (-/+) 104-/32+ 

(24%+) 

60-/28+ 

(32%+) 

130-/114+ 

(47%+) 

51-/70+ 

(58%+) 

43-/78+ 

(64%+) 

<0.0001 

BDNF genotype 

(valval/met carrier) 

95/41 58/30 167/77 89/32 79/42 0.66 
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Note: *p-values are two-sided and derived from Fisher’s exact test (for study phase, sex, APOE ε4 status, and BDNF 

genotype) and ANOVA (for age, education, and MMSE). ADNI = Alzheimer’s Disease Neuroimaging Initiative; 

CN = cognitively normal; SMC = some memory concern; EMCI; early mild cognitive impairment; LMCI = late 

mild cognitive impairment; AD = Alzheimer’s disease; MMSE = Mini Mental Status Exam score; Val = Val/Val 

homozygotes; Met = Met allele carriers; F = female; M = male; y = years; SD = standard deviation. 

 

 

Figure 6-5. SORL1-BDNF interaction effect on in vivo Aβ in the pars orbitalis measured by [18F]Florbetapir PET in 

the ADNI 2 sample (n=710). A) Residual amyloid load within genotype-defined groups according to SORL1 

rs618874 and BDNF Val66Met. B) Effect of SORL1 rs618874 within BDNFVal homozygote and BDNFMet carrier 

groups separately, adjusted for co-variates, with 95% confidence intervals. Rs618874T was associated with 

decreased amyloid burden in BDNFVal homozygotes (ΔAβTT:CC=-0.067, C.I.95%= [-0.13,-0.01]), but increased 
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amyloid in BDNFMet carriers (ΔAβTT:CC=0.12, C.I.95%= [0.03,0.21]). Results were not impacted by removal of 

observations lying beyond 1.5*interquartile range of mean binding.  

 

6.4.3 Entorhinal Cortex Volume and White Matter Microstructure 

Exploratory analyses was conducted for each of the 36 significant SNP-SNP interactions from 

expression analyses on entorhinal cortex volume in both ADNI 1, GO, and 2 (n=1 285) and 

ROS/MAP (n=172) samples. In ADNI and ROS/MAP, nine and 17 SNPs showed interaction 

with BDNF Val66Met at uncorrected p<0.05, respectively; however, no result survived FDR 

correction for multiple testing. In ADNI, rs662821 showed the strongest interaction with BDNF 

Val66Met (F1,1268=4.69, p=0.031), whereby the rs662821
T
 allele was associated with slightly 

decreased cortical volume in BDNF
Val

 homozygotes, but increased volume in BDNF
Met

 carriers 

(see Figure 6-6A). In ROS/MAP, rs12364988 showed the strongest interaction with BDNF 

Val66Met (F1,161=6.64 ,p=0.011), whereby the rs12364988
T
 allele conferred a slight decrease in 

cortical volume in BDNF
Val

 homozygotes, but increased volume in BDNF
Met

 carriers (see Figure 

6-6B). While not significant after FDR correction, these findings were directionally convergent, 

as in both samples, rs662821
T
 and rs12364988

T
 are strongly linked (ADNI r

2
=0.79; ROS/MAP 

r
2
=0.82).  

Finally, in 185 subjects from ADNI 2 with DTI data, the interaction of 36 SNP-SNP interactions 

from expression analyses were tested for effects on FA across five regions bilaterally. At an 

uncorrected threshold of P<0.05, 31 tests were significant and predicted FA of left CBH (1), 

right IFO (20), left SLF (3), and left SS (7).  Rs618874, the top SORL1 SNP showing interaction 

effects on in vivo Aβ [18F]Florbetapir PET, also showed the most significant interaction with 

BDNF Val66Met on FA (F1,172=6.44, praw=0.012), whereby the rs618874
T 

allele was associated 

with an average increase in FA of the right IFO in BDNF
Val

 homozygotes, but decrease in 

BDNF
Met

 carriers (see Figure 6-6C). No results survived FDR correction. 

Given the strong LD structure in the SORL1 locus, the above findings link higher genotypically-

regulated prefrontal SORL1-005 mRNA expression (ROS/MAP) with increased frontal amyloid 

burden both postmortem (ROS/MAP) and in vivo (ADNI). Further exploratory analysis also link 

this same transcriptional mechanism to greater entorhinal cortex volume (ROS/MAP and ADNI), 
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and reduced fronto-temporal-occipital white matter microstructural integrity (ADNI), though 

these results did not survive correction for multiple testing. All top results for each analyzed 

phenotype are summarized in Table 6-3. 

 

Table 6-3. Combined Top Results Summary 

Phenotype Sample N SORL1 SNP 
(hg38 pos) 

LD 
(r2,D’)a 

Ref 
allele 

SORL1 Effect 
Direction 

Praw Pcor 

BDNF
Met 

BDNF 
Val/Val 

SORL1-005 

expression 

ROS/MAP 
total 

441 Rs12364988 
(121496917) 

1,1 T + - 1.25x10-5 7.5x10-4 

SORL1-005 

expression 

ROS/MAP 
non-AD 

179 Rs676759 
(121488556) 

0.63,-0.97 C + - 1.14x10-5 1.4x10-3 

SORL1-005 

expression 

ROS/MAP 
AD 

262 Rs676759 
(121488556) 

0.63,-0.97 C + - 0.16 1 

[18F]Florbetapir 

PET amyloid – 

pars orbitalis 

ADNI 2 710 Rs618874 0.52,-0.93 T + - 5.3x10-4 0.047 

Entorhinal cortex 

volume 

ROS/MAP 172 Rs12364988 1,1 T + - 0.031 0.11 

Entorhinal cortex 

volume 

ADNI 1, 
GO and 2 

1 285 Rs662821 0.65,-0.99 T + - 0.011 0.06 

DTI white matter 

FA - IFOF 

ADNI 2 185 Rs618874 0.52,-0.93 T - + 0.012 0.39 

Note: aLD values extracted from HaploReg v4 (Broad Institute, Cambridge, MA) (L. D. Ward & Kellis, 2011). 

Correction for multiple testing performed according to methods outlined in Statistical Analysis (Section 6.3.3). For 

expression analyses, Bonferroni correction for 60 tests was performed (6 effectively independent SNPs, 10 SORL1 

transcripts) to identify significant SNP-SNP eQTL interactions. For subsequent analyses of the 36 significant SNP-

SNP eQTL interactions identified for SORL1-005, the Benjamini-Hochberg false discovery rate correction 

procedure was used (Benjamini & Hochberg, 1995). LD = linkage disequilibrium; ROS/MAP = Religious Orders 

Study / Memory and Aging Project; IFOF = inferior fronto-occipital fasciculus; AD = pathologically confirmed 

Alzheimer’s disease; eQTL = expression quantitative trail loci.  
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Figure 6-6. SORL1-BDNF Interaction Effects on Entorhinal cortex volume (A and B) and white matter FA (C). A) 

In ADNI 1/GO/2 (n=1 285), the rs662821T allele was associated with slightly decreased cortical volume in BDNFVal 

homozygotes (Δvolume(mm3)TT:CC=-24.6, C.I.95%= [-143.62,94.36]), but increased volume in BDNFMet carriers 

(Δvolume(mm3)TT:CC=209.72, C.I.95%= [33.44,386]). B) In the ROS/MAP imaging sample (n=172), rs12364988 

showed nominally significant interaction with BDNF Val66Met, whereby the rs12364988T allele conferred a 

nominal decrease in cortical volume in BDNFVal homozygotes (Δvolume(mm3)TT:CC=-113.3, C.I.95%= [-

268.82,42.18]), but increased volume in BDNFMet carriers (Δvolume(mm3)TT:CC =251.26, C.I.95%= [20.7,481.82]). C) 

In the ADNI 2 DTI dataset (n=185), the rs618874T allele was associated with an average increase in FA of the right 

IFO in BDNFVal homozygotes (ΔFATT:CC=0.0057, C.I.95%= [-0.0089,0.02]), but decrease in BDNFMet carriers 

(ΔFATT:CC=-0.028, C.I.95%= [-0.05,-0.0063]). 

 

6.5 Discussion 

We found that linked SORL1 variants within the 5’ region of the gene interacted with BDNF 

Val66Met to regulate prefrontal expression of a truncated SORL1 transcript, SORL1-005 

(ENST00000534286), and that this isoform was associated with increased diffuse amyloid 

plaques in midfrontal tissue from the same subjects. In a second sample, we demonstrated that 

the same genetic interactions regulating SORL1-005 expression determined frontal amyloid 

deposition in vivo using PET imaging. The gene variant that most significantly interacted with 

BDNF Val66Met to influence SORL1-005 expression, rs12364988, is part of the same highly-

linked haplotype block previously shown to interact with BDNF in human iPSC-derived neurons 
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to regulate SORL1 mRNA expression (Young et al., 2015). The three-SNP haplotype block 

identified in that study was comprised of variants rs668387, rs689021, and rs641120; in our 

analyses of SORL1-005 expression, these variants each showed significant interactions with 

BDNF Val66Met after correction (all three p=1.2x10
-4

).  

SORL1 is a member of the Vps10p-domain (Vps10p-D) family of neuronal receptors (Willnow, 

Petersen, & Nykjaer, 2008), several of which have been shown to interact directly with BDNF. 

For example, SorCS2 has been shown to determine the way in which glia and neurons respond to 

pro-neurotrophins, including proBDNF, in murine CNS (Glerup et al., 2014). Also, sortilin, 

another Vps10p receptor, is responsible for intracellular trafficking of newly synthesized 

proBDNF via its physical interaction with the region of BDNF pro-domain in which the 

Val66Met substitution resides (Z.-Y. Chen et al., 2005). The STRING10 database (http://string-

db.org/) shows evidence for indirect interaction of SORL1 with BDNF (score=0.869). 

SORL1-005 is a putative protein-coding transcript of 1 124 amino acids (UniProt ID: E9PP43). 

Based on sequence alignment from the ensembl database, the protein translated from SORL1-

005 would lack the Vps10p domain found in the full length protein, potentially interrupting its 

functions within the amyloid cascade and leading to accumulation of pathogenic Aβ species 

(Andersen et al., 2005; Caglayan et al., 2014; Rogaeva et al., 2007), consistent with our 

observations of concomitant increases in diffuse plaque pathology postmortem and amyloid 

burden in vivo. Another potential mechanism via which increased expression of the truncated 

SORL1-005 transcript may exert pathological effects on brain structure is regulated 

intramembrane proteolysis (Brown, Ye, Rawson, & Goldstein, 2000); SORL1 has been shown to 

undergo sequential cleavage by alpha and gamma-secretase enzymes (Nyborg, Ladd, Zwizinski, 

Lah, & Golde, 2006), liberating protein fragments that are internalized to the nucleus and play 

roles in gene regulation. It is possible that altered recognition of SORL1-005 by gamma-

secretase results in the absence of SORL1 COOH-terminal fragments that may preserve 

pathologically-protective gene regulation (such absence is also seen in cells co-transfected with 

FAD-linked PS1 mutations (Nyborg et al., 2006)). In either case, given SORL1’s dual protective 

roles in recycling APP (Andersen et al., 2005; Rogaeva et al., 2007) and lysosomal targeting of 

Aβ (Caglayan et al., 2014), alternative splicing causing loss-of-function would be expected to 

influence amyloid levels in the direction observed in our study. Of note, SORL1-005 has 

previously been analyzed for association with neuropathology by Yu et al. (Yu, Chibnik, et al., 
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2015) who found no association of SORL1-005 expression with amyloid pathology in the 

ROS/MAP sample. This discrepancy is due to study parameter differences, as the effect was 

small and not detected at threshold using permuted p-values from multiple tests performed in that 

study. 

The association of SORL1-005 with only diffuse plaques of the midfrontal cortex may suggest a 

differential contribution of the SORL1-BDNF interaction to diffuse vs. neuritic plaque pathology. 

Diffuse plaques account for the majority of plaque pathology in human brain (Dickson & 

Vickers, 2001), are associated with AD diagnosis (Yamaguchi et al., 1988), but are also found 

frequently so-called “normal” aging (Morris et al., 1996), suggesting that they may be indicative 

of the early, pre-symptomatic stages of disease or even just a non-pathological form of aging. It 

has been shown that Aβ plays crucial roles in neuroplasticity (Parihar & Brewer, 2010), and may 

be produced as part of a neuroprotective response to synaptic pathology in AD (H. Lee et al., 

2007; Masliah, Terry, Mallory, Alford, & Hansen, 1990); Aβ1-28 has been shown to promote 

growth and survival of hippocampal neurons (Whitson, Selkoe, & Cotman, 1989). As a result, it 

is possible that the regulatory action of SORL1 and BDNF may act on amyloid pathways in such 

a way that influences both neuritic plaque (neurotoxic) and diffuse plaque (neuroprotective) 

pathologies. Particularly, the interaction effects of variants identified by our study may influence 

the latter pathway to the greatest degree; hence why genetic effects are only observed in subjects 

without neuritic plaque and neurofibrillary tangle pathology. Through this lens, BDNF’s 

modulation of resilience via cognitive reserve (D. Ward et al., 2015) is clarified – depending on 

SORL1 genotype, the effects of Val66Met may influence protection against AD by promoting 

diffuse plaque deposition over neuritic. The hypothesis that aging interacts with other factors to 

render the brain susceptible to AD (Geula et al., 1998) and that amyloid builds as a consequence 

is supported by our previous observations of BDNF Val66Met age-dependent effects on brain 

structure. [18F]Florbetapir has been shown to accurately measure plaque burden in the brain as 

indexed by both diffuse and neuritic plaque counts (correlation r=0.95 of [18F]Florbetapir with 

total plaque score) (Choi et al., 2012), meaning that our findings in the ADNI PET sample 

(n=710) may be reflective of SORL1-005’s effect on diffuse plaques in postmortem frontal 

cortex. Taken together, we suggest that the interaction between BDNF and SORL1 may provide 

links between AD risk and the healthy aging process by influencing the expression of a transcript 
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that is not related to AD risk, but nonetheless modulates diffuse amyloid deposition postmortem 

and in vivo.  

It is also possible that the transcriptional mechanism behind the effect may be subject to either 

interruption or masking by AD-related neuropathology. It has been shown that Aβ oligomers are 

capable of inducing gene expression changes across diverse functional classes in human brain 

tissue (Sebollela et al., 2012), and that genes involved in intracellular trafficking specifically 

show marked down-regulation in postmortem AD brain (S. A. Small et al., 2005). These findings 

may have implications for identifying gene regulatory mechanisms in AD brain, as the effects of 

transcriptional machinery may be altered depending on the level of cellular pathology present. 

Previous investigations of the effect of SORL1 variation on the expression of SORL1 isoforms 

have shown mixed results, with some studies demonstrating that SORL1 variants are associated 

with the preferential expression of SORL1 protein isoforms, but not with levels of SORL1 

mRNA (Caglayan et al., 2012). Others have shown that common variants are associated with 

total SORL1 mRNA in temporal cortex, and with exon-skipping specifically in frontal cortex 

(McCarthy et al., 2012). Others have found no effects of genotype on expression of SORL1 

(Dodson et al., 2006). We have previously found that 5’ SORL1 variants influence the expression 

of total SORL1 mRNA in an age-dependent manner, whereby genotypic differences were only 

observed early in life (Felsky et al., 2014). The implications of alternative splicing for the 

interpretation of SORL1 quantity to AD risk are potentially wide-reaching; differences in 

isoform expression have been observed between CN elderly and AD patients (Grear et al., 2009), 

and studies looking at total SORL1 expression have found increases (Furuya et al., 2012), 

decreases (Scherzer et al., 2004), and no differences (Sager et al., 2012) between AD and CN 

subjects. 

Our observation that SORL1 variants interacted with BDNF Val66Met to influence entorhinal 

cortex volume as well as FA of several white matter tracts suggests that the same genetic 

mechanism determining SORL1-005 expression may also influence brain structure. We chose to 

analyze entorhinal cortex as it is one of the earliest brain regions to be affected by AD 

pathological lesions and atrophy (H. Braak, Thal, Ghebremedhin, & Del Tredici, 2011), finding 

that the genotypically-defined groups showing increased SORL1-005 expression and amyloid 

pathology also showed increases in entorhinal cortical volume in two independent samples. In 
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agreement, it was recently shown that entorhinal cortex volume is actually increased in healthy 

individuals genetically at-risk for AD (DiBattista, Stevens, Rebeck, & Green, 2014), though this 

study included much younger subjects (average age ~22y) than were analyzed here. A reason 

why individuals with greater amyloid pathology might also have increased entorhinal volumes 

lies in BDNF Val66Met’s role in moderating access to cognitive reserve (D. Ward et al., 2015). 

The interaction of BDNF with SORL1 may have parallel neuroprotective effects on entorhinal 

structure as a compensatory mechanism against increasing pathology. For effects on white matter 

microstructure, the directionality of effect aligns with the majority of work on microstructural 

alterations of white matter in AD, with consistent reductions in FA observed for MCI and AD 

subjects (H. Huang et al., 2012; J.-H. Wang et al., 2013). Our top association with inferior 

fronto-occipital fasciculus is not surprising; it connects to the temporal lobe, is a late-myelinating 

fiber, and is associated with AD risk (Stricker et al., 2009; Voineskos et al., 2011), consistent 

with the retrogenesis model of AD development and progression. It should be emphasized, 

however, that no interaction effects on brain structure in this study surpassed our experimental 

threshold for multiple correction, despite directional congruence between samples for each 

phenotype tested.  

BDNF Val66Met has been associated with risk for AD (Fehér, Juhász, Rimanóczy, Kálmán, & 

Janka, 2009) and AD-related intermediate phenotypes (Y. Y. Lim et al., 2013; Voineskos et al., 

2011), albeit inconsistently,(Ji et al., 2015) and is thought to be an important factor in 

modulating neuroplasciticty (Mizui et al., 2015; Ninan et al., 2010). Our results may provide 

insight into the conflicting literature surrounding the effect of BDNF Val66Met (i.e. why it has 

not been identified by GWAS for AD diagnosis or pathology); the vast majority of studies in this 

area have not accounted for SORL1 genotype and thus may be missing crucial information 

determining the direction and magnitude of BDNF’s effects on disease risk. The mechanisms via 

which BDNF Val66Met influences downstream risk for AD are complex and not yet understood; 

recently it was shown that BDNF Val66Met alters the expression of miR-146 in humanized 

BDNF knock-in mice (Hsu, Xu, Mukai, Karayiorgou, & Gogos, 2015), suggesting that this 

variant may influence the expression of multiple target genes simultaneously. 

The present study has several limitations. First, the decision to analyze gene expression as a 

binary outcome necessarily introduces a level of bias into the analyses; it is possible that by 

splitting the distributions of transcript expression into expressed vs. not expressed, we missed 
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quantitative information that here we would have been unable to test without violating statistical 

assumptions. Second, the expression of SORL1 has been shown to be cell-type specific (Scherzer 

et al., 2004), whereby some individuals with AD have loss of expression n neurons, but not glia. 

We are unable to test this directly in our sample, as the ROS/MAP expression data are derived 

from tissue homogenate of the prefrontal cortex. Therefore, it is possible that noise due to cell 

non-specificity played some role in our results; though it is unlikely that this would generate 

false positives given that cell-specific changes in SORL1 expression would more likely serve to 

dilute signal within a mixed-cell population. Also, we took steps to maintain regional specificity 

in our analyses by analyzing frontal pathology, which should help mitigate some concerns over 

differences between regions. Third, as with any RNA sequencing experiment, alignment error 

must be considered as a potential confounder. Finally, BDNF’s effects on amyloid pathology 

(Rohe et al., 2009; Young et al., 2015) as well as TrkB-dependeng trophic signaling (Rohe et al., 

2013) have been shown to depend on SORL1, and in this study we used the functional Val66Met 

variant as an indirect proxy for brain BDNF activity (Egan et al., 2003). However, there is 

inconsistency in the literature surrounding the influence of Val66Met on BDNF protein and 

mRNA expression in blood and brain tissue that highlights the uncertainty of this assumption. In 

postmortem brain, Val66Met has been shown to influence cerebellar BDNF mRNA expression 

(Burgess et al., 2015). In blood, it has been shown that BDNF
Val

 homozygotes show lower levels 

of BDNF than BDNF
Met

 carriers in Generalized Anxiety disorder (GAD) (Moreira et al., 2015), 

while other studies and meta-analyses of disease populations and healthy subjects have found no 

effect of BDNF Val66Met genotype on plasma or serum BDNF (Jamal, Van der Does, Elzinga, 

Molendijk, & Penninx, 2015; Kreinin et al., 2015; Luykx et al., 2013; Suriyaprom, 

Tungtrongchitr, & Thawnasom, 2014; Terracciano et al., 2013; Y. Wang et al., 2015).  

In conclusion, we have demonstrated a gene-gene interaction between two AD risk-associated 

genes that impacts the isoform-specific expression of SORL1, amyloid deposition, and 

potentially brain structure, in two large samples. We believe that this interaction may provide 

insight into the convergence of prototypical neurotoxic Aβ deposition and the brain reserve 

found in aged individuals who are resilient to AD pathology.  This work has implications for the 

way that genetic association studies of SORL1 and BDNF are interpreted and may be of use in 

determining specific groups of genetically at-risk individuals in future clinical trials of novel 

therapies directed toward amyloidogenic and neuroplastic mechanisms. 
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Chapter 7  

7 General Discussion and Future Directions 

7.1 Overview of Findings 

The goal of this work was to identify the phenotypic impact of functional genetic variants that 

operate within convergent AD risk pathways and in doing so, shed light on the roles of those 

pathways in AD (genes and gene variants depicted in Figures 7-1 and 7-2).  

In the first study (Chapter 3), we demonstrated that the major AD risk factor APOE ε4 was 

associated with microstructural qualities of the cingulum bundle in an age-dependent manner, 

providing a structural substrate for observed inefficiencies in hippocampal engagement during 

memory recall as measured with fMRI. This contribution provides an explanation for 

discrepancies of APOE’s effect in the literature and suggests links between vascular changes 

associated with ε4 status may manifest differently at different ages. The deficits in white matter 

microstructural integrity observed in late life ε4 carriers are consistent with the literature on AD 

risk (Section 1.3.7). The early life effects of APOE ε4 and the early changes in FA measurable in 

healthy subjects who go on to develop a-MCI (Zhuang et al., 2012) both point toward 

mechanisms acting at the early stage of illness. As outlined in Section 1.2.3, amyloidogenesis is 

one such early-acting mechanism, and this led us toward the next gene candidate, SORL1, which 

codes for an APOE receptor and regulates Aβ production. 

In the second study (Chapter 4), we examined the effects of well-established SORL1 gene 

variants on white matter microstructure in two independent samples, but went further to identify 

mechanisms of action by analyzing two postmortem samples for gene expression and 

neuropathology.  We found that SORL1 risk variants were associated with consistent decreases in 

FA across the lifespan, as well as early loss of SORL1 expression and late-life accumulation of 

Aβ. In contrast to our study of APOE, the age-independent effects of SORL1 suggest an “early 

hit’ mechanism, whereby an early life event (perhaps change in gene expression) elicits changes 

in white matter that are preserved and do not accelerate with age. As described in Sections 1.2.3 

and 1.2.6, recent ammendments and revisions of the amyloid cascade hypothesis have brought 

the accumulation of Aβ neuropathology and neuroinflammation side-by-side; the so-called 
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“amyloid cascade-inflammatory hypothesis” (McGeer & McGeer, 2013). This inexorable link 

between amyloid and inflammatory pathways led us to the next gene candidate, TSPO, which 

codes for a receptor that may modulate the response of microglia to SORL1-dependent Aβ 

accumulation.  

In the third study (Chapter 5), we probed in vivo and postmortem the effect of a functional 

variant within the TSPO gene, which is thought to be a marker for neuroinflammation, by 

comprehensively analyzing neuroinflammatory and cerebrovascular phenotypes in three separate 

cohorts. We examined in vivo cerebral infarcts, white matter hyperintensities and plasma 

inflammatory biomarkers, as well as postmortem infarcts, cerebral amyloid angiopathy and 

microglial activation. Against expectation, we found no replicable effect of the TSPO variant on 

any phenotype of interest. Following our in-depth characterization of these three genes (APOE, 

SORL1, and TSPO) independently, and building on prior work from our group characterizing the 

AD-associated BDNF Val66Met mutation (Voineskos et al., 2011), we next sought to develop a 

more complete picture of the genetic effects we and others had previously observed by 

specifically analyzing gene-gene interaction effects (Section 1.4.8).  

In the fourth and final study of this thesis (Chapter 6), based on evidence from recent human 

stem cell experiments, we tested the interaction effects of SORL1 and BDNF genotypes on 

SORL1 mRNA isoform expression and white matter FA in two independent samples. This was 

the first examination of genetic effects on SORL1 expression using RNA-sequencing, and we 

were able to demonstrate a significant interaction between SORL1 and BDNF that aligned with in 

vivo experiments showing SORL1 genotype-dependent effects of BDNF administration on 

SORL1 expression. 

Together, these findings suggest that common genetic variants in APOE and SORL1 contribute 

independently to the changes in AD risk biomarkers in healthy subjects and, in the case of 

SORL1, may parse some of the heterogeneity of amyloid levels in subjects with MCI and AD. 

This work also demonstrates that binding properties of an important neuroinflammatory receptor, 

TSPO, are not reflected by alterations in brain vascular lesions, blood-based inflammatory 

biomarker levels, or the activation of microglia, and that interactions between variants of SORL1 

and BDNF, proposed as a major contributor to the “missing heritability” of AD (Zuk et al., 

2012), may have large effects on basic cellular mechanisms that contribute to transcriptomic 
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diversity and ultimately altered neuropathological profiles. Using the information in this thesis, it 

may be possible to delineate molecular subtypes of subjects with genotypes that render them 

susceptible to particular neuropathological pathways or deficient for potentially protective 

factors. These insights were made possible by the powerful combination of genetics and 

neuroimaging, complimented by next-generation RNA sequencing and unique postmortem brain 

samples with detailed neuropathological assessments.  

 

 

Figure 7-1. Summary of related genes analyzed in this thesis, their connections to eachother, and a basic 

diagrammatical representation of how genes mediate the effects of environment on pathology found in AD. Pictoral 

depictions of AD biomarkers on the lower quadrant from left to right: aging, cognition, cortical morphology, white 

matter tract microstructure, measurements of neuropathology, and gene expression array. 
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Figure 7-2. Contextual positions of gene variants analyzed in each study for APOE, SORL1, TSPO, and BDNF. 

 

7.2 Limitations 

There are several important limitations to the approaches presented in this thesis that should be 

considered when drawing conclusions from this work. Some are specific to the study designs 

employed, while others are more general but nonetheless deserve mention. First, all data 

presented in this thesis is from cross-sectional analyses. The overarching question of risk for 

disease can only be answered definitively by prospective, longitudinal study designs. Therefore, 

many assumptions have been made regarding the interpretation of the preceding data, especially 

in the context of predicting future outcomes and supposing rates of change. We acknowledge 

that these study designs cannot infer causality, but rather draw associations between variables of 

interest that may represent upstream, concomitant, or downstream processes. It should also be 

noted, however, that the nature of genetic studies is that in nearly all cases (at least where effects 

of somatic mutation can be reasonable ruled out), the determination of genotype is known to 

have occurred before the development of the phenotype being measured. This provides a reliable 

timeline and lends some legitimacy to the inference of causality regarding genetic associations. 
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Second, the totality of genetic variation within genes included in this thesis was not examined. 

SNPs were chosen based on extensive a piori data suggesting their functional relevance to AD 

and effects on related biomarkers (outlined in Section 1.4). While this candidate approach is 

well-nested in the existing literature, inter-study variability and uncertainty surrounding 

estimates of risk effects or proposed functions means that there is always room for further 

discovery. Gene variants other than those investigated in APOE and BDNF have been implicated 

in disease, and it is possible that the gene variants included in our studies are effectively tagging 

genetic variation at unobserved causal loci. For the specific variants investigated in our study, 

this may not be as such of a concern, since there is a substantial bodies of literature 

characterizing the functional consequences of APOE ε4, BDNF Val66Met, and TSPO rs6971. 

For SORL1, the direct consequences of gene variation are not as well established, however, we 

addressed this in the final study, where interactions with BDNF were considered at all SORL1 

variants locus-wide, not just at those previously associated with AD. This approach, and the use 

of polygenic risk scores that capture gene variation within and across loci, are discussed below as 

future work. 

Third, several samples of cognitively normal elderly subjects were analyzed in the present 

studies. While the goal is ultimately to apply our findings to the general population, these 

samples, which would contain some individuals with non-penetrant brain pathology, may 

represent atypically resilient groups of people. Beyond the aforementioned resilient qualities in 

the ROS sample (Negash et al., 2011), the lack of penetrance of AD pathology is an inevitable 

source of sampling bias, as healthy control lifespan samples in our studies are recruited based on 

a lack of clinical symptoms and not the absence of underlying neuropathology. Young 

participants may go on to develop dementia in late life, whereas recruited elderly are known to 

be free of cognitive deficits (either due to lack of pathology or resilience to it). This means that 

simple, linear conclusions about the relationships between genes, observed brain structure and 

pathology, and risk for AD may not accurately reflect the underlying processes. For example, in 

Chapter 4, the SORL1 alleles that have been implicated in risk for AD (Rogaeva et al., 2007) 

were those associated with increases in white matter tract FA and early life SORL1 mRNA 

expression, as well as less late life accumulation of amyloid. Despite this drawback, the 

discrepancy between allelic association with brain biomarker data and AD diagnosis is not 

uncommon (Bralten et al., 2011; Cuenco et al., 2008), and in fact this directional “inconsistency” 
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may very well represent resilient compensatory networks in individuals who are susceptible to 

AD via insult to other brain regions or systems (discussed in Section 7.4.1). 

Finally, a number of technical and biological limitations in MRI studies must be considered. 

Important technical confounds include motion artefacts (changes in MR signal due to the 

movement of subjects in the scanner can impact volume and thickness estimates (Reuter et al., 

2015)), magnetic field distortions and inhomogeneities (Styner, Brechbuhler, Szckely, & Gerig, 

2000; D. Wang, Strugnell, Cowin, Doddrell, & Slaughter, 2004), intrinsic scanner properties (Fu, 

Fonov, Pike, Evans, & Collins, 2006) (inter-site variability may hinder cross-experiment 

replication and combined analyses without careful consideration (Thompson et al., 2014)), and 

computer software differences (Pipitone et al., 2014) (different image processing methodologies 

can have drastic consequences for output values). Other confounds that are much less often 

corrected for include biological contributors to the variance in MR signal, such as time of day 

(Hastings, Reddy, & Maywood, 2003), menstruation (Hagemann et al., 2011), dehydration 

(Duning et al., 2005), physical activity (C. J. Smith et al., 2014), and inflammation (Braskie et 

al., 2014). Like with structural MRI, but perhaps to a greater extent, technical and biological 

confounds are often major concerns with DWI. For example, heart pulsation may cause local 

changes in brain parenchyma volume (Poncelet, Wedeen, Weisskoff, & Cohen, 1992) and impact 

DWI signal (Skare & Andersson, 2001). For more detail on limitations of DWI and DTI, and the 

strategies used to address them, see Tournier et al. (Tournier, Mori, & Leemans, 2011). Also, the 

use of single-shot echo-planar imaging sequences for DWI renders the acquisition especially 

susceptible to motion and other B0 field-induced artefacts; though some of these concerns have 

been mitigated by parallel imaging and multi-shot acquisition sequences (Pruessmann, Weiger, 

Scheidegger, & Boesiger, 1999; Soares, Marques, Alves, & Sousa, 2013). 

 

7.3 Immediate Questions Raised 

Each study in this thesis raises a number of questions that can be used moving forward to 

generate hypotheses and guide further research. Chapters 3 and 4 adopt lifespan approaches to 

draw some conclusions about the effect of genetic variation at different points in the lifespan. 

This is important because, despite AD being a late-life disease, the pathogenesis of AD is 
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arguably underway as early as childhood (Growdon & Hyman, 2014; Trommsdorff et al., 1999). 

In postmortem brain tissue from 42 young individuals aged 4-29, Braak et al. (H. Braak & 

Tredici, 2010) found that all showed early changes in tau proteins. In a much larger follow-up 

study of 2 332 brains including those from subjects as young as one year of age, Braak et al. (H. 

Braak et al., 2011) again found abnormal tau across the age range. However, the presence of 

even the earliest stages of AD pathology may not be sufficient to state that someone is on the 

path to AD. It was recently suggested that the presence of NFTs and absence of neuritic plaques 

may characterize a condition termed “primary age-related tauopathy” (PART), rather than a pre-

symptomatic form of AD (Crary, 2014). Braak and Del Tradici (H. Braak & Del Tredici, 2015) 

criticize this theory, however, citing a lack of postmortem evidence for a tauopathy showing only 

ghost NFTs in the absence of other early tauopathic lesions. Despite the evidence for a more 

direct association of NFTs with cognition than Aβ, it has been shown that NFTs may reside in 

host neurons for several decades without destroying them (kordower 2001), suggesting that 

manifestation of neurogenerative process may be conditional upon other age-related factors. In 

children and adolescents, APOE ε4 carrier status has been associated with volume reductions and 

cortical thinning in the temporal lobe (La Joie, Crowley, Wendelken, Bunge, & Jagust, 2014), 

specifically left entorhinal cortex thickness shows a stepwise relationship to APOE status, where 

ε4< ε3< ε2 (Shaw et al., 2007). Even infant ε4 carriers show alterations in brain structure, with 

less myelination and lower gray matter volume than ε4 non-carriers in the cingulate, lateral 

temporal, and occipitotemporal regions, and greater myelination and volume in frontal regions 

(Dean et al., 2014).  

Most studies of AD risk genes and brain structure have been in elderly populations. Those 

studies examining genetic effects across the human lifespan are few (especially for genes other 

than the ubiquitous APOE), and the work on SORL1 in this thesis represents some of the first 

efforts of this type. Interpreting the effects of genetic variants on AD biomarkers at different 

stages of the lifespan (or between healthy and dementia populations) therefore is a tricky 

business and, as emphasized in this thesis, should be approached cautiously. We demonstrated 

that APOE shows an age-dependent effect on cingulum bundle white matter microstructure. This 

could be interpreted in multiple ways. Potentially, 1) the function of APOE4 protein within 

biochemical pathways over the course of life as age-related physiological changes occur, or 2) 

early etiopathological changes arising from consistent APOE4 dysfunction spur developmental 
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compensatory processes, however, these effects erode quickly with time (faster than in neutral ε3 

homozygotes), ultimately resulting in late-life white matter alterations and AD risk compared to 

ε3. Interestingly, a recent report published after our APOE study found that the effect of APOE 

on cognition may be mediated by white matter tract integrity (Lyall et al., 2014). In contrast, we 

observed age-independent effects of SORL1 on white matter integrity in the same sample as well 

as a second replication sample. This could also be interpreted in multiple ways: 1) SORL1 

variants in the 5’ region impact the development but not the rate of decline of white matter, 

possible due to inaction in later life (i.e. loss of genetic effect on gene expression), or 2) 5’ 

SORL1 variants impact pathogenic processes both early and late in life, but decline in white 

matter in old age due to deleterious alleles is successfully counteracted by compensatory 

pathways, potentially related to BDNF.  Both of these possible interpretations are supported by 

our follow-up work in the BrainCloud postmortem sample (Section 4.4.2), finding early life 

changes in SORL1 gene expression due to genotype and no difference in elderly. Other potential 

mechanisms and experiments to assess them are discussed in Section 7.4.3.  

The question of age-dependent and –independent effects of genetic variants is important in the 

larger clinical picture of AD and its early stages. While a-MCI is a high-risk state for progression 

to AD, not all subjects with a diagnosis of a-MCI will develop AD; MCI is much more unstable 

than AD. This could be due to more ambiguous diagnostic criteria, or the fact that at this stage in 

the disease process, multiple brain pathways are adapting to aging as well as any additional 

pathological insults (analogous to the way the body responds to infection), a process that may be 

more successful in some than others (see resilience, Section 7.4.1). In clinical trials of 

neuroactive treatments, such as transcranial magnetic stimulation (TMS) or transcranial direct 

current stimulation (tDCS), which targets specific brain circuitry, the temporal effect of AD risk 

genes may be of critical importance. For example, CAMH has recently been awarded a $10 

million, five-year grant (Preventing Alzheimer’s dementia with Cognitive remediation plus tDCS 

in MCI and Depression (PACt-MD)) from Brain Canada and the Chagnon Family to test the 

efficacy of tDCS in preventing dementia in subjects with MCI or depression. Brain imaging will 

be used to assess the efficacy of this treatment. However, if genetic information and its age-

associated pattern of effect on the brain are not taking into account, results may be confounded. 

This confounding has been demonstrated in studies of neuroinflammation, where the primary 

outcome measure, TSPO binding, is heavily dependent on the rs6971 polymorphism (Owen et 
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al., 2012), and administration of pharmacological agents targeting this outcome has strong 

genotype-dependent effects (Owen et al., 2014). In fact, the NIH now requires that funded 

clinical trials demonstrate engagement of the therapeutic target (i.e. brain structure, function, or 

pathology), and so genetic variants with effects on these measures (potentially discrepant at 

different stages of life and disease) should be accounted for. 

 

7.4 Future Directions and Next Steps 

7.4.1 Cognitive/Brain Reserve and Resilience 

Perhaps counter-intuitively, it has been suggested that the factors contributing to the risk for AD 

are not the same as those contributing to the pathology that is associated with AD (Chui et al., 

2012). Part of this notion comes from the idea that “pure” AD pathology underlies most cases of 

dementia, when in fact this is increasingly being recognized as a rare phenomenon (J. A. 

Schneider et al., 2007). A large proportion of subjects with no signs of dementia are found to 

have significant AD-related neuropathology at autopsy. This gap between cognitive performance 

and neuropathology is termed “reserve” (Stern, 2002, 2012). Two models of reserve are 1) brain 

reserve and 2) cognitive reserve. According to the brain reserve model, an individual with greater 

brain reserve capacity (e.g. larger brain, more neurons etc.) would be more resilient to a given 

amount of neurological insult (Katzman et al., 1988). In contrast, cognitive reserve takes into 

account the dynamic nature of neural networks and describes the brain’s ability to sustain normal 

operation despite damage to its neural substrate (Stern, 2002), potentially through more efficient 

utilization of existing brain circuitry. Epidemiological observations support both brain reserve 

and cognitive reserve models, and these concepts are widely used to explain the gap between 

neuropathology and the degree of cognitive impairment (Dufouil, Alpérovitch, & Tzourio, 2003; 

Glatt et al., 1996; Schofield, Logroscino, Andrews, Albert, & Stern, 1997; Stern et al., 1994). 

Another explanation for the apparent gap between neuropathologic alterations and cognitive 

impairment may be unobserved or unknown pathologies. The likelihood of clinical dementia 

increases with multiple coexisting pathologies (J. A. Schneider et al., 2007). Thus, prior studies 

only accounting for limited pathologies (e.g. amyloid and tau) would show an apparent 

discrepancy between pathology and cognition (as in the Nun study (Snowdon et al., 1997), where 
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the presence of infarcts explained apparent outliers in the pathology-cognition relationship). 

Furthermore, details not captured by conventional neuropathologic assessment (such as amyloid 

plaque size, subtypes of oligomeric amyloid, and synaptic tau multimers) may also explain some 

of the mismatches between pathology and cognitive outcome (Perez-Nievas et al., 2013).  

The concepts of brain and cognitive reserve are thematically present throughout the literature, 

even if not explicitly stated. For example, it has been shown that aerobic exercise over 6-months 

in elderly is associated with increased volume of both gray and white matter (Colcombe et al., 

2006), a classic explanation for brain reserve due to physical activity. The relationship between 

AD genes and resilience is an increasingly popular area of study. It has been shown that physical 

activity is able to protect against hippocampal volume reduction over 18 months, but only in 

APOE ε4 carriers (C. J. Smith et al., 2014). One promising approach to studying cognitive 

resilience involves the calculation of a “residual cognitive score”, which is a single number 

generated for each individual in a study that represents the deviation from a level of cognition 

that is expected based on their level of brain pathology. As a proof of concept, a GWAS in 750 

subjects from ADNI with “residual cognition” (after controlling for age, sex, education, and 

pathologies measured by structural MRI (stroke (Hachinski score), infarcts, hippocampal 

volume, cortical volume, and WMH volume)) found that a variant within the RNASE13 was 

genome-wide significant (Mukherjee et al., 2012). This top variant was in high LD with SNPs 

mapping to the TPPP2 gene - a member of the α-synuclein family of proteins - indicating that 

perhaps the residual cognitive score was associated with unobserved Lewy body pathology.  

Future examinations of a “residual cognitive score” could shed light on the processes 

underlying resilience to pathology, either by identifying truly resilient functions or 

illuminating important unobserved pathological features in AD and aging.  

 

7.4.2 Locus-Wide Analyses, Polygenic Scores, and DNA Sequencing 

The concern that common genetic variants currently studied in GWAS and other candidate 

approaches do not capture the real underlying, causal gene variants for disease or disease 

biomarkers is substantiated. It has been estimated that only between 24-33% of phenotypic 

variation in AD is explained by known common variants (S. H. Lee et al., 2013; Ridge et al., 

2013), whereas AD is ~80% heritable (Gatz et al., 2006). While this “missing heritability” and 
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the potential role of interaction has been discussed and addressed in Chapter 6, other hypotheses 

states that gene variants that are not genotyped by available assays or observed in a given study 

are those responsible for disease, and that the statistical signal observed in current genetic 

association studies are diluted proxies of these causal variants. Also, there are many other types 

of common genetic variation, such as copy number variants (CNVs) and microsatellites that are 

often completely ignored, often due to technological or costs restraints. An example of a gene in 

which types of sequence variation other than SNPs may influence important AD phenotypes is 

the translocase of outer mitochondrial membrane 40 homolog (TOMM40) gene, which lies 

within an LD block encompassing APOE and APOC1. Allen Roses, the discoverer of the APOE 

association with AD, identified a poly-T structural variant (rs10524523) that significantly 

predicted the age-at-onset of AD in APOE ε3 homozygotes (Roses et al., 2010), effectively 

refining and building upon the association of that genomic locus with AD phenotypes. Future 

studies of the genes analyzed in this thesis should consider these additional sources of 

genetic variability and, as implemented in Chapter 6, apply locus-wide analyses to reduce 

noise due to LD and better localize the causal variation. 

Among recent developments in AD genetics is the use of polygenic risk scores to evaluate 

cumulative genetic contributions to AD phenotypes (Desikan et al., 2015). Polygenic risk scores 

are single values calculated for an individual based on sum of risk alleles for any number of a 

priori selected genetic variants, which may be weighted by their effects on disease status or some 

other phenotype of interest. Work in AD has shown that polygenic risk scores derived from top 

GWAS-significant SNPs (not including APOE ε4) are associated with AD risk (Marden, Walter, 

Tchetgen Tchetgen, Kawachi, & Glymour, 2014) and AD-related biomarkers such as CSF Aβ42 

and cortical thickness (Sabuncu et al., 2012) in independent samples. This lends credence to the 

GWAS method as useful for discovery of potentially meaningful AD-related variants. However, 

recent analyses from the Cognitive Ageing Genetics England and Scotland (CAGES) consortium 

in over 3 000 cognitively normal elderly found that the AD polygenic risk score was not 

associated with baseline or change in cognitive ability (S. E. Harris et al., 2014), suggesting that 

genetic contributors to AD are distinct from those associated with cognitive decline in . Future 

work would benefit from the development of polygenic risk scores that are specific to gene 

expression or resilience biomarkers in aging and AD. 
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The common disease, rare variant hypothesis stipulates that rare mutations with high penetrance 

are at the root of disease risk and that common SNPs may tag these variations via LD structure 

(N. J. Schork et al., 2009). DNA sequencing allows for the detection of sequence variation at any 

site, not just those pre-determined in a chip-based genotyping assay. However, major limitations 

to this method currently include increased cost compared to genome-wide genotyping and the 

need for very large sample sizes to detect and statistically analyze rare variants. This method has 

yielded consistent results (though publication bias should always be considered) implicating rare 

variation in a multitude of complex disorders and phenotypes, including type I diabetes 

(Nejentsev, Walker, Riches, Egholm, & Todd, 2009), obesity (Ahituv et al., 2007), heart disease 

and cholesterol (Cohen et al., 2006), and colorectal cancer (Azzopardi et al., 2008). Of particular 

relevance, rare coding variation in SORL1 has been found in individuals with early onset AD 

(Pottier et al., 2012). Initiatives to sequence the genome in large groups of AD and control 

subjects, such as the NIH-funded Alzheimer’s Disease Sequencing Project (ADSP) (Childress et 

al., 2014) make analyses of rare variation in candidate genes feasible without significant 

investment. Future analyses should include the contributions of both common and rare 

genetic variation. 

 

7.4.3 Verification of Underlying Mechanisms 

There are many biological mechanisms by which a genetic variant may exert downstream 

phenotypes. In Chapter 6, we examined the consequences of a regulatory SORL1-BDNF 

interaction on alternative splicing, or the production of mRNA transcript isoforms from the same 

genetic sequence. Sequence-dependent modification of trans- and cis-acting regulatory 

mechanisms is an active field of investigation. The Encyclopedia of DNA Elements (ENCODE) 

project was launched in 2003 (The ENCODE Project Consortium, 2012) is ongoing 

collaboration aiming to functionally characterize genetic variation across the human genome, 

including effects on transcription factor binding and the function of remote long-range regulatory 

elements. ENCODE has played a major role in dispelling dogma surrounding so-called “junk 

DNA”, which was the colloquial term originally ascribed to non-coding sequences of DNA 

(~98% of the genome), by demonstrating the ~80% of the human genome has biochemical 

function. This information is readily available on commonly used bioinformatics portals such the 
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University of California, Santa Cruz (UCSC) Genome Browser. Efforts led by the Allen Institute 

for Brain Science (Seattle, WA) have developed a three-dimensional map of gene expression and 

anatomy in the human and mouse brain, allowing for in silico analyses of regional gene 

expressions for candidate genes (Sunkin et al., 2012). Using the Allen Brain Atlas, one can easily 

determine gene co-expression profiles based not only on magnitude of expression but also on 

topographical similarities, an important consideration when seeking explanations for region-

specific effects of genetic variants. Another dataset, called the Genotype-Tissue Expression 

(GTEx) project has been made publicly available by the Broad Institute of MIT and Harvard 

(Cambridge, MA), and allows for the quick integrated analyses of genetic effects on gene 

transcript levels across tissue types, including different brain regions (Lonsdale et al., 2013). 

Pilot data from this project includes an average of 28 tissue samples from 237 postmortem 

donors, on which DNA genotyping (at 4.3 million variants) and RNA sequencing (at a depth of 

82.1 million mapped reads per sample) (The GTEx Consortium, 2015). Future studies of 

genetic variation would be wise to use in silico analyses in these and other publicly 

available resources to determine putative genetic function to guide choices of follow-up 

genes for laborious and costly in vitro experimental manipulation. 

Mechanisms of gene regulation not due directly to sequence variation are known as epigenetic 

modifications, which themselves may be influenced both by genetic variation and environmental 

factors. Epigenetics and gene expression mechanisms are at the foundation of the brains response 

to injury and are altered in AD (Lord & Cruchaga, 2014); mouse models of AD utilize both gene 

mutation and gene overexpression constructs to elicit their disease phenotype (Webster et al., 

2014). Epigenetic factors influence gene expression by controlling the accessibility of DNA 

sequence to the cell’s transcriptional machinery; chromatin, the DNA/protein complex found in 

cell nuclei, can be either open/active (euchromatic) or closed/inactive (heterochromatic). 

Established indicators of chromatin state, and therefore transcriptional activity, are histone 

protein modifications (e.g. acetylation of H3K9) and DNA CpG sequence methylation, whereby 

acetylation of the H3K9 histone mark indicates active transcription (Z. Wang et al., 2008) and 

CpG methylation indicates the blocking of transcription (P. A. Jones & Takai, 2001). Combining 

genetic sequence data with epigenetic data and gene expression data derived from next-

generation RNA sequencing may make it possible to dissect, at multiple levels, how genetic 

variation functions independently or dependently of epigenetic phenomena. Since a gene that is 
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not expressed cannot influence downstream phenotypes, the modeling of genetics in combination 

with epigenetics and gene expression can also help inform which genes are likely causal. 

Evolutionary information may also be used to gain insight into the mechanisms underlying 

genetic effects on disease risk. Some have suggested that the ε4 allele persists evolutionarily due 

to balancing selection (the so-called Charlesworth-Martin hypothesis), as evidence shows it is 

protective against liver damage in hepatitis C infection (Finch & Morgan, 2007). Interestingly, 

the estimated prevalence of APOE ε4 relates linearly to latitude in a manner that is ethnicity-

dependent: frequency declines with increasing northern latitude in Africans (R
2
=0.32) and 

Asians (R
2
=0.16), but increases in Europeans (R

2
=0.30) and North Americans (R

2
=0.57) (P. P. 

Singh et al., 2006). This also has implications for studies of genetic effects in different ethnic 

groups, as the frequency of risk-associated alleles may differ greatly between and even within 

populations in such a way that relates to other environmental, potentiating factors. For example, 

Africans living closer to the equator may have a higher prevalence of APOE ε4, however, they 

also have more sunlight exposure and consequently lower risk for vitamin D deficiency 

(Gilchrest, 2008), which is linked to AD (Annweiler, Llewellyn, & Beauchet, 2013). Further 

work evaluating genetic risk factors within ethnic groups (including Caucasians) should 

consider population substructure factors such as geographical location. 

 

7.4.4 Evaluation of Potential Clinical Utility 

There remains an important unanswered question; what constitutes clinical utility?  How much 

research and what level of confidence is required to use genetic information for diagnostic and 

prognostic decisions? These are hotly debated questions, and with respect to genetic testing in 

AD, their answers are not clear (Atkins & Panegyres, 2011; J. P. Evans, Skrzynia, & Burke, 

2001). A Pubmed search for articles including APOE (or apolipoprotein E) and aging, dementia, 

or Alzheimer’s in their titles or abstracts alone (search terms: ((APOE[Title/Abstract]) OR 

(apolipoprotein e[Title/Abstract]) ) AND (aging[Title/Abstract] OR dementia[Title/Abstract] OR 

alzheimer[Title/Abstract] OR alzheimer's[Title/Abstract])) OR Apolipoprotein E4) currently 

yields 6 809 studies, compared to similar searches for other AD risk genes and their proteins 

(PSEN1=2 344, BDNF=1 124, PSEN2=672, SORL1 = 153, TSPO=95) (retrieved Sept 18, 2015). 

And yet, information on APOE ε4 status, the most widely replicated genetic AD risk factor, was 
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deemed “not sufficiently specific” to warrant a diagnosis of probable AD “with increased level 

of certainty”, in the 2011 NIA-AA diagnostic criteria (McKhann et al., 2011). Despite decades of 

work and thousands of studies, no genetic tests currently exist for the detection or prediction of 

AD.  While it is not logical to believe that perfectly discriminative or predictive tests can or 

should be developed from genetic information alone (as even the highest heritability estimates 

suggest that environment accounts for ~20% of variance in AD (Gatz et al., 2006)), the 

determination of how to use genetic data smartly in the clinic, perhaps incorporating gene-

gene and gene-environment interactions into predictions, should be a focus of future 

research. For example, some evidence suggests that SORL1 variants other than those analyzed 

in this thesis may interact with sex to elicit effects on hippocampal atrophy and whole brain 

volume (Assareh et al., 2014).  

In order to assess the authenticity of genetic associations with disease biomarkers, the quality of 

outcome phenotypes is of the utmost importance. The term “endophenotype” (or intermediate 

phenotype) was first coined by Bernard John and Keith R. Lewis (John & Lewis, 1966) and  

introduced to the field of psychiatry by Irving Gottesman and James Shields (Gottesman & 

Shields, 1973). An endophenotype is a heritable biomarker that co-segregates with the illness in 

question, is state independent, and is found in family members without the disease (Gottesman & 

Gould, 2003). These criteria have been amended several times (including that the phenotype be 

part of the causal process of disease, or that it manifest at certain points in the lifespan) (Flint & 

Munafò, 2007), but the essential idea remains the same: endophenotypes are less complex than 

the diseases they represent, hence they are easier to dissect and more representative of the 

underlying disease process. The biomarkers examined in this thesis all meet criteria for 

endophenotype and thus represent meaningful, AD-related phenomena with genetic 

underpinnings. However, the literature (as reviewed in Chapter 1) remains heterogeneous 

surrounding the effects of many AD-implicated genes on established endophenotypes, both 

within and between diagnoses (Reitz & Mayeux, 2009). Work to enhance the resolution, 

specificity, and sensitivity of currently available endophenotypes is already underway; a recent 

study from our group has demonstrated that a novel technique known as neurite orientation 

dispersion and density imaging (NODDI) (H. Zhang, Schneider, Wheeler-Kingshott, & 

Alexander, 2012) that uses diffusion MRI to estimate neuritic density and organization in gray 

matter, may be a valid in vivo representation of the cortical dendritic disruption that is commonly 
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found in aging (Dickstein, Weaver, Luebke, & Hof, 2013). The NODDI-derived orientation-

dispersion index (ODI) is able to predict chronological age with greater accuracy than cortical 

thickness or white matter FA in the same group of subjects (Nazeri et al., 2015). In order to go 

further, our understanding of the heterogeneity of AD and the relative roles of different 

etiopathological mechanisms is required – the work in this thesis may shed light on the 

phenotypic presentation of pre-symptomatic AD subjects with genetic risk backgrounds. 

The use of genetic information in risk assessment for AD, where truly causal gene variants are 

unknown, is a contentious area (Karlawish & Green, 2014). Communicating results of such an 

assessment to the lay population is difficult, time consuming, and may incite undue panic. Still, 

companies such as 23andMe, Navigenics, and DeCODEme are offering genetic testing and 

instant delivery of results direct-to-consumer in the general population. While some basic 

protections afforded by the Genetic Information Nondiscrimination Act (GINA) (Hudson, 

Holohan, & Collins, 2008), including those related to insurance and employee privacy, have 

been established in the United States, no such legislation has been enacted in Canada (Walker, 

2014).  Furthermore, the heterogeneity in the literature is reflected in the inconsistency of disease 

risk estimates between services (Kalf et al., 2014). Optimistically for the future of personalized 

risk assessments and ultimately personalized medicine, it seems that disclosure of well-

established risk genotypes (such as APOE ε4) does not result in clinically meaningful post-

disclosure distress (R. C. Green et al., 2009). A noninferiority trial has shown that condensed 

disclosure protocols (e.g. those performed briefly in clinic by a general practitioner, as opposed 

to at length by a trained genetic counsellor) result in no higher incidence of anxiety or depression 

following disclosure of APOE genotype (R. C. Green et al., 2014). Intriguingly, however, 

Lineweaver et al. (Lineweaver, Bondi, Galasko, & Salmon, 2014) have shown that the awareness 

of APOE ε4 carrier status is enough to affect objective cognitive performance in healthy older 

adults. Those APOE ε4 carriers who were aware of their status performed worse on verbal 

memory tasks than those ε4 carriers who were unaware. Further, it has been shown that 

knowledge of the absence of APOE ε4 does not effectively alleviate concern over perceived risk 

(Chilibeck, Lock, & Sehdev, 2011). This raises important questions about the way that the 

concept of disease “risk” is interpreted, and demonstrates the need for informative and actionable 

gene-biomarker associations. 
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7.5 Final Conclusions 

An editorial published during the final stages of preparation of this thesis (Au, Piers, & 

Lancashire, 2015) made recommendations to the field that the focus of AD research be on 

identifying molecular subtypes of the disorder for specific targeting of novel therapies. The work 

presented here attempts to do this and signals that progress is being made. For example, therapies 

impacting early life development of white matter, particularly association fibres connecting to 

the temporal lobe, may be most effective in those homozygous for 5’ SORL1 risk variants. 

Currently, our lab is conducting trials of TMS (albeit in individuals with schizophrenia) to test its 

effects on brain structure, including white matter. 

In Sum, AD is primarily a genetic disorder, and both independent and interactive effects of 

specific genetic variants can be measured on brain-related biomarkers of AD risk and 

progression. These effects may be age-dependent or age-independent, and implicate multiple 

etiopathogenic pathways related to cerebrovascular disease, Aβ accumulation, 

neuroinflammation, and neurodegeneration, reflecting the heterogeneous composition of AD 

risk. Further studies should focus on encompassing all sources of genetic variation, consider the 

interactive and cumulative effects of these variants, account for epigenetic modifications, and 

refine outcome phenotypes to maximize statistical power and potential clinical utility of findings. 

If successful, future work as well at that presented in this thesis may facilitate the identification 

of genetically at-risk molecular subtypes and development of novel treatments aimed at AD 

onset delay or prevention. 
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